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Overview of
DataTAG Project
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Member Organizations

http://www.datatag.org/
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Project Objectives

Build a testbed to experiment with massive 
file transfers (TBytes) across the Atlantic

Provide high-performance protocols for 
gigabit networks underlying data-intensive 
Grids

Guarantee interoperability between major 
HEP Grid projects in Europe and the USA
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DataTAG Testbed
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Records Beaten Using 
DataTAG Testbed

Internet2 IPv4 land speed record:
February 27, 2003
10,037 km
2.38 Gbit/s for 3,700 s
MTU: 9,000 Bytes

Internet2 IPv6 land speed record:
May 6, 2003
7,067 km
983 Mbit/s for 3,600 s
MTU: 9,000 Bytes

http://lsr.internet2.edu/
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Network Research Activities

Enhance performance of network protocols 
for massive file transfers:

Data-transport layer: TCP, UDP, SCTP

QoS:
LBE (Scavenger)
Equivalent DiffServ (EDS)

Bandwidth reservation:
AAA-based bandwidth on demand
Lightpaths managed as Grid resources

Monitoring

Rest of this talkRest of this talk
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Problems with TCP in
Data-Intensive Grids
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Problem Statement

End-user’s perspective:
Using TCP as the data-transport protocol for Grids 
leads to a poor bandwidth utilization in fast WANs

Network protocol designer’s perspective:
TCP is inefficient in high bandwidth*delay 
networks because:

few TCP implementations have been tuned for gigabit 
WANs
TCP was not designed with gigabit WANs in mind
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Design Problems (1/2)

TCP’s congestion control algorithm (AIMD) is 
not suited to gigabit networks
Due to TCP’s limited feedback mechanisms, 
line errors are interpreted as congestion:

Bandwidth utilization is reduced when it shouldn’t

RFC 2581 (which gives the formula for 
increasing cwnd) “forgot” delayed ACKs:

Loss recovery time twice as long as it should be
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Design Problems (2/2)

TCP requires that ACKs be sent at most 
every second segment:

Causes ACK bursts
Bursts are difficult to handle by kernel and NIC
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AIMD (1/2)

Van Jacobson, SIGCOMM 1988
Congestion avoidance algorithm:

For each ACK in an RTT without loss, increase:

For each window experiencing loss, decrease:

Slow-start algorithm:
Increase by one MSS per ACK until ssthresh

i
ii cwnd

cwndcwnd 1
1 +=+

ii cwndcwnd ×=+ 2
1

1
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AIMD (2/2)

Additive Increase:
A TCP connection increases slowly its bandwidth 
utilization in the absence of loss:

forever, unless we run out of send/receive buffers or 
detect a packet loss
TCP is greedy: no attempt to reach a stationary state

Multiplicative Decrease:
A TCP connection reduces its bandwidth utilization 
drastically whenever a packet loss is detected:

assumption: line errors are negligible, hence packet loss 
means congestion
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Congestion Window (cwnd)

congestioncongestion
avoidanceavoidance

slowslow
startstart
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Disastrous Effect of Packet Loss
on TCP in Fast WANs (1/2)

AIMD C=1 Gbit/s   MSS=1,460 Bytes
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Disastrous Effect of Packet Loss
on TCP in Fast WANs (2/2)

Long time to recover from a single loss:
TCP should react to congestion rather than packet 
loss:

line errors and transient faults in equipment are no 
longer negligible in fast WANs

TCP should recover quicker from a loss

TCP is particularly sensitive to packet loss in 
fast WANs (i.e., when both cwnd and RTT 
are large)
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Characterization of the 
Problem (1/2)

The responsiveness ρ measures how quickly we 
go back to using the network link at full capacity 
after experiencing a loss (i.e., loss recovery time 
if loss occurs when bandwidth utilization = 
network link capacity)

ρρ ==
2 . inc2 . inc
C . RTTC . RTT 22

TCP responsiveness
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Characterization of the Problem (2/2)

inc size = MSS = 1,460 Bytes

~100 ms20max: 5 ms100 Mbit/s
(typ. LAN in 2003)

~1h 30min~46,200120 ms10 Gbit/s

~23 min~11,600120 ms2.5 Gbit/s

~6 min~2,900120 ms622 Mbit/s

~150 ms8max: 20 ms10 Mbit/s
(typ. LAN in 1988)

0.6 ms1max: 40 ms9.6 kbit/s
(typ. WAN in 1988)

Responsiveness# incRTTCapacity
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Congestion vs. Line Errors

RTT=120 ms, MTU=1,500 Bytes, AIMD

2 10-14

3 10-13

2 10-10

2 10-8

Required Bit
Loss Rate

2 10-1010 Gbit/s
3 10-92.5 Gbit/s
2 10-6100 Mbit/s
2 10-410 Mbit/s

Required Packet
Loss RateThroughput

At gigabit speed, the loss rate required for packet loss to 
be ascribed only to congestion is unrealistic with AIMD
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Single TCP Stream Performance 
under Periodic Losses

Effect of packet loss 
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Solutions
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What Can We Do?

To achieve higher throughputs over high 
bandwidth*delay networks, we can:

Fix AIMD
Change congestion avoidance algorithm:

Kelly: Scalable TCP
Ravot: GridDT

Use larger MTUs
Change the initial setting of ssthresh
Avoid losses in end hosts
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Delayed ACKs with AIMD

RFC 2581 (spec. defining TCP congestion control 
AIMD algorithm) erred:

Implicit assumption: one ACK per packet
In reality: one ACK every second packet with 
delayed ACKs
Responsiveness multiplied by two:

Makes a bad situation worse in fast WANs

Problem fixed by ABC in RFC 3465 (Feb 2003)
Not implemented in Linux 2.4.21

i
ii cwnd

SMSSSMSScwndcwnd ×
+=+1
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Delayed ACKs with AIMD and ABC
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Scalable TCP: Algorithm

For cwnd>lwnd, replace AIMD with new 
algorithm:

for each ACK in an RTT without loss:
cwndi+1 = cwndi + a

for each window experiencing loss:
cwndi+1 = cwndi – (b x cwndi)

Kelly’s proposal during internship at CERN:
(lwnd,a,b) = (16, 0.01, 0.125)

Trade-off between fairness, stability, variance 
and convergence
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Scalable TCP: lwnd
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Scalable TCP: Responsiveness 
Independent of Capacity
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Scalable TCP:
Improved Responsiveness

Responsiveness for RTT=200 ms and 
MSS=1,460 Bytes:

Scalable TCP: ~3 s
AIMD:

~3 min at 100 Mbit/s
~1h 10min at 2.5 Gbit/s
~4h 45min at 10 Gbit/s

Patch against Linux kernel 2.4.19:
http://www-lce.eng.cam.ac.uk/˜ctk21/scalable/



30NORDUnet 2003, Reykjavik, Iceland, 26 August 2003

Scalable TCP vs. AIMD:
Benchmarking

1421066616
14086478
13560274
9339142
441671

Scalable 
TCP

2.4.19 TCP 
+ new dev 

driver
2.4.19 TCPNumber of 

flows

Bulk throughput tests with C=2.5 Gbit/s. Flows 
transfer 2 GBytes and start again for 20 min.
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GridDT: Algorithm

Congestion avoidance algorithm:
For each ACK in an RTT without loss, 
increase:

By modifying A dynamically according to 
RTT, GridDT guarantees fairness among TCP 
connections:

i
ii cwnd

Acwndcwnd +=+1

2
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AIMD: RTT Bias
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GridDT Fairer than AIMD
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Larger MTUs (1/2)

Advocated by Mathis
Experimental environment:

Linux 2.4.21
SysKonnect device driver 6.12
Traffic generated by iperf:

average throughput over the last 5 seconds

Single TCP stream
RTT = 119 ms
Duration of each test: 2 hours
Transfers from Chicago to Geneva

MTUs:
POS MTU: 9180 Bytes
MTU on the NIC: 9000 Bytes
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Larger MTUs (2/2)

TCP max: 990 Mbit/s (MTU=9000)TCP max: 990 Mbit/s (MTU=9000)
TCP max: 940 Mbit/s (MTU=1500)TCP max: 940 Mbit/s (MTU=1500)



36NORDUnet 2003, Reykjavik, Iceland, 26 August 2003

Related Work

Floyd: High-Speed TCP
Low: Fast TCP
Katabi: XCP
Web100 and Net100 projects
PFLDnet 2003 workshop:

http://www.datatag.org/pfldnet2003/
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Research Directions

Compare performance of TCP variants
Investigate proposal by Shorten, Leith, Foy 
and Kildu
More stringent definition of congestion:

Lose more than 1 packet per RTT

ACK more than two packets in one go:
Decrease ACK bursts

SCTP vs. TCP
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