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Facts About DataTAG

¢ Budget: EUR ~4M

¢ Manpower:
m 24 people funded
m 30 people externally funded

¢ Start date: 1 January 2002
¢ Duration: 2 years
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Three Objectives

¢ Build a testbed to experiment with
massive file transfers across the Atlantic

¢ Provide high-performance protocols for
gigabit networks underlying data-intensive
Grids

¢ Guarantee interoperability between several
major Grid projects in Europe and USA
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Collaborations

& Testbed: Caltech, Northwestern University,
UIC, UMich, StarlLight

& Network Research:

m Europe: GEANT + Dante, University of Cambridge,
Forschungszentrum Karlsruhe, VTHD, MB-NG,
SURFnet

m USA: Internet2 + Abilene, SLAC, ANL, FNAL, LBNL,
ESnet

m Canarie

& Grids: Databrid, GridStart, Crossérid,
iVDGL, PPDG, GriPhyN, GGF
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Grids in DataTAG

¢ Interoperability between European and
U.S. 6rids:
= High Energy Physics (main focus)
m Bioinformatics
m Earth Observation

¢ 0Grid middleware:
s DataGrid
m {VDGL VDT (shared by PPDG and GriPhyN)

Information modeling (GLUE initiative)
¢ Software development

¢
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Objectives

¢ Provisioning of 2.5 Gbit/s transatlantic circuit
between CERN (Geneva) and StarLight (Chicago)

Dedicated to research (no production traffic)
Multi-vendor testbed with layer-2 and layer-3
capabilities:
m Cisco, Juniper, Alcatel, Extreme Networks
¢ Get hands-on experience with the operation of
gigabit networks:

m Stability and reliability of hardware and software
= Interoperability
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2.5 Gbit/s Transatlantic
Circuit

¢ Operational since 20 August 2002
¢ Provisioned by Deutsche Telekom

¢ Circuit initially connected to Cisco 76xx routers
(layer 3)

¢ High-end PC servers at CERN and StarlLight:

4x SuperMicro 2.4 GHz dual Xeon, 2 6B memory
8x SuperMicro 2.2 GHz dual Xeon, 1 6B memory
24x SysKonnect SK-9843 GbE cards (2 per PC)
total disk space: 1680 GB

can saturate the circuit with TCP traffic

¢ Deployment of layer-2 equipment underway
¢ Upgrade to 10 Gbit/s expected in 2003
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Network Research



Network Research
Activities

¢ Enhance performance of network protocols
for massive file transfers (TBytes):
m Data-transport layer: TCP, UDP, SCTP

¢ QoS:
m LBE (Scavenger) Rest Of this talk

¢ Bandwidth reservation:
m AAA-based bandwidth on demand
m Lightpaths managed as 6Grid resources

¢ Monitoring
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Problem Statement

& End-user's perspective: Using TCP as the
data-transport protocol for Grids leads to
a poor bandwidth utilization in fast

WAN:s:
m e.g., see demos at iGrid 2002

& Network protocol designer's perspective:
TCP is currently inefficient in high
bandwidth*delay networks for 2 reasons:

m TCP implementations have not yet been tuned for
gigabit WANs
m TCP was not designed with gigabit WANs in mind
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TCP: Implementation
Problems

¢ TCP's current implementation in Linux

kernel 2.4.20 is not optimized for gigabit
WANSs:

m e.g., SACK code needs to be rewritten

¢ Device drivers must be modified:

m e.g., enable interrupt coalescence to cope with ACK
bursts
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TCP: Design Problems

TCP's congestion control algorithm (AIMD)
is not suited to gigabit networks

Due to TCP's limited feedback
mechanisms, line errors are interpreted as
congestion:

m Bandwidth utilization is reduced when it shouldn't

RFC 2581 (which gives the formula for
increasing cwnd) “forgot” delayed ACKs

TCP requires that ACKs be sent at most
every second segment 2> ACK bursts 2>
difficult to handle by kernel and NIC
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AIMD Algorithm (1/2)

¢ Van Jacobson, SIGCOMM 1988

¢ Congestion avoidance algorithm:
m For each ACK in an RTT without loss, increase:

1

cwnd

cwnd, , = cwnd, +
I
s For each window experiencing loss, decrease:

1
cwnd,,, = cwnd, — —x cwnd,

¢ Slow-start algorithm:
m Increase by 1 MSS per ACK until ssthresh
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AIMD Algorithm (2/2)

¢ Additive Increase:
m A TCP connection increases slowly its bandwidth
utilization in the absence of loss:

e forever, unless we run out of send/receive buffers or
detect a packet loss

e TCP is greedy: no attempt to reach a stationary
state

¢ Multiplicative Decrease:

m A TCP connection reduces its bandwidth utilization
drastically whenever a packet loss is detected:

e assumption: packet loss means congestion (line errors
are negligible)
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G| Disastrous Effect of Packet Loss
on TCP in Fast WANs (1/2)

TCP NewReno throughput as a function of time C=1Gbit/s, MSS=1460bytes
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atal Disastrous Effect of Packet Loss
| on TCP in Fast WANs (2/2)

¢ Long time to recover from a single loss:

m TCP should react to congestion rather than packet
loss (line errors and transient faults in equipment
are no longer negligible)

m TCP should recover quicker from a loss

¢ TCP is more sensitive to packet loss in
WANSs than in LANs, particularly in fast
WANSs (where cwnd is large)
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Characterization of the Problem (1/2)

The responsiveness p measures how quickly

we go back to using the network link at full C RTT2
capacity after experiencing a loss (i.e., loss p= —-—
recovery time if loss occurs when bandwidth 2.1inc

utilization = network link capacity)
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Characterization of the Problem (2/2)

inc size = MSS = 1,460 bytes
# inc = window size in pkts

Capacity RTT # inc Responsiveness

9.6 kbit/s max: 40 ms 1 0.6 ms
(typ. WAN in 1988)

10 Mbit/s max: 20 ms 8 ~150 ms
(typ. LAN in 1988)

100 Mbit/s max: 5 ms 20 ~100 ms
(typ. LAN in 2003)

622 Mbit/s 120 ms ~2,900 ~6 min

2.5 Gbit/s 120 ms ~11,600 ~23 min

10 Gbit/s 120 ms ~46,200 ~1h 30min




Congestion vs. Line Errors

RTT=120 ms, MTU=1500 bytes, AIMD

Througput | Feirsd Bt | Required Packer
10 Mbit/s 2 108 210+
100 Mbit/s 2 10-10 2 10°
2.5 Gbit/s 31013 310°
10 Gbit/s 2 1014 2 10-10

At gigabit speed, the loss rate required for packet loss to
be ascribed only to congestion is unrealistic with AIMD
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What Can We Do?

¢ To achieve higher throughputs over high

bandwidth*delay networks, we can:

= IChcmge AIMD to recover faster in case of packet
oSS:
e larger cwnd increment
e less aggressive decrease algorithm
e larger MTU (Jumbo framesg
m Set the initial slow-start threshold (ssthAresh) to a
value better suited to the delay and bandwidth of
the TCP connection
m Avoid losses in end hosts:
e implementation issue

¢ Two proposals: Scalable TCP (Kelly) and
eridDT E’Ravot)
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Scalable TCP: Algorithm

¢ For cwnd>lwnd, replace AIMD with new algorithm:
m for each ACK in an RTT without loss:
e cwnd,,; = cwnd. + a
= for each window experiencing loss:
e cwnd,,; = cwnd, - (b x cwnd))

¢ Kelly's proposal during internship at CERN:
(lwnd,a,b) = (16, 0.01, 0.125)

m Trade-off between fairness, stability, variance and
convergence

¢ Advantages:
= Responsiveness improves dramatically for gigabit networks
m Responsiveness is independent of capacity
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Scalable TCP: /wnd
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Scalable TCP: Responsiveness
Independent of Capacity
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Scalable TCP:
Improved Responsiveness

¢ Responsiveness for RTT=200 ms and
MSS=1460 bytes:
m Scalable TCP: 2.7 s

m TCP NewReno (AIMD):
e ~3 min at 100 Mbit/s
e ~1h 10min at 2.5 Gbit/s
e ~4h 45min at 10 Gbit/s

Patch available for Linux kernel 2.4.19

¢ For details, see paper and code at:
m http://www-Ice.eng.cam.ac.uk/"ctk21/scalable/

L 4
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Scalable TCP vs. TCP NewReno:
Benchmarking

Number of | 2.4.19 TCZP.4+. lngew Scalable
flows TCP dev driver TCP
1 / 16 44
2 14 39 93
4 27 60 135
8 47 86 140
16 66 106 142

Bulk throughput tests with C=2.5 6Gbit/s. Flows
transfer 2 Gbytes and start again for 1200s.
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GridDT: Algorithm

¢ Congestion avoidance algorithm:
m For each ACK in an RTT without loss, increase:
A
cwnd,
¢ By modifying A dynamically according to
RTT, guarantee fairness among TCP
connections:

Al _(RTT, Y
A2\ RTT,,

3 March 2003 T. Kelly, S. Ravot and J.P. Martin-Flatin 33

cwnd,,, = cwnd, +




TCP NewReno: RTT Bias
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Measurements with
Different MTUs (1/2)

¢ Mathis advocates the use of larger MTUs

¢ Experimental environment:
m Linux 2.4.19
m Traffic generated by iperf
e average throughout over the last 5 seconds
m Single TCP stream

m RTT =119 ms
m Duration of each test: 2 hours
s Transfers from Chicago to Geneva

¢ MTUs:

m set on the NIC of the PC (/fconfig)
m POS MTU set to 9180
m Max MTU with Linux 2.4.19: 9000
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Measurements with
Different MTUs (2/2)

TCP max: 990 Mbit/s (MTU=9000)
UDP max: 957 Mbit/s (MTU=1500)

—MTU=4000
—MTU=9000

Throughput (Mb/s
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Measurement Tools

¢ We used several tools to investigate TCP
performance issues:
m Generation of TCP flows: /jperf and gensink
m Capture of packet flows: fcpadump
m fcpdump > tcptrace > xplot

¢ Some tests performed with SmartBits
2000
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Delayed ACKs

4

*

4

4

4

RFC 2581 (spec. defining TCP congestion
control AIMD algorithm) erred:

SMSS x SMSS
cwnd

cwnd,,, = cwnd, +
Implicit assumption: one ACK per packet

Delayed ACKs: one ACK every second
packet

Responsiveness multiplied by two:

m Makes a bad situation worse when RTT and cwnd
are large

Allman preparing an RFC to fix this
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Related Work

¢ Sally Floyd, ICIR: Internet-Draft “High
Speed TCP for Large Congestion Windows"

Steven Low, Caltech: Fast TCP

Dina Katabi, MIT: XCP
Web100 and Net100 projects

PFLDnet 2003 workshop:
s http://www.datatag.org/pfldnet2003/

® 6 0 o
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Research Directions

¢ Compare the performance of different
proposals

¢ More stringent definition of congestion:

m Lose more than 1 packet per RTT

¢ ACK more than two packets in one go:
m Decrease ACK bursts

¢ Use SCTP instead of TCP
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