
A Model-Based System
Supporting Automatic

Self-Regeneration of Critical
Software

Paul Robertson & Brian Williams

Model-Based and Embedded Robotic Systems
http://mers.mit.edu

MIT
Computer Science and Artificial Intelligence Laboratory

5/19/05 SelfMan 2005 2

What we are trying to do
• Why software fails:

– Software assumptions about the environment
become invalid because of changes in the
environment.

– Software is attacked by a hostile agent.
– Software changes introduce incompatibilities.

• What can be done when software fails:
– Recognize that a failure has occurred.
– Diagnose what has failed – and why.
– Find an alternative way of achieving the

intended behavior. Runtim
e

Models

5/19/05 SelfMan 2005 3

Self repairing explorer:
Deep Space 1

Flight Experiment, May 1999.

courtesy ARC & JPL

Cassini Saturn Probe

5/19/05 SelfMan 2005 5

Project Status
Funding: DARPA (SRS), NASA (Ames)
Current State: Prototype System Operational
Project Premise:

Extend proven approach to hardware diagnosis
and repair as used in DS-1 to critical software.

Principle Ideas:
Model-Based Language Approach
Redundant Methods
Method Deprecation
Model-Predictive Dispatch
Hierarchical Models
Adjustable Autonomy

5/19/05 SelfMan 2005 6

Overview
Technical Objective:

When software fails because (a) environment changes
(b) software incompatibility (c) hostile attack, (1)
recognize that a failure has occurred, (2) diagnose
what has failed and why, and (3) find an alternative
way of achieving the intended behavior.

Technical approach:
By extending RMPL to support software failure, we can

extend robustness in the face of hardware failures to
robustness in the face of software failures. This
involves:

(1) Detection
(2) Diagnosis
(3) Reconfiguration
(4) Utility Maximization.

RMPL Models of:
Software Components,

Component Hierarchy & Interconnectivity,
and Correct Behavior.

5/19/05 SelfMan 2005 7

Expected Benefits
• Software systems that can operate

autonomously to achieve goals in complex and
changing environments.
– Modeling environment

• Software that detects and works around “bugs”
resulting from incompatible software changes.
– Modeling software components

• Software that detects and recovers from
software attacks.
– Modeling attack scenarios

• Software that automatically improves as better
software components and models are added.

5/19/05 SelfMan 2005 8

What can go wrong?
1. Hardware: A problem with robot hardware.
2. Software: A problem with the environment.

1. A mismatch between a chosen algorithm and the
environment such as there not being enough
light to support processing of a color image.

2. An unexpected imaging problem such as an
obstruction to the visual field (caused by a large
obscuring rock).

Solution to 2.2

Switch to a contingent plan:

1. Exception
2. Model Predictive Dispatch
3. Replanning

Solution to 2.1

Reconfigure the software structure:

1. Redundant Methods
2. Mode Estimation
3. Mode Reconfiguration

5/19/05 SelfMan 2005 9

Test Bed Platform

Involves:
Cooperative use of multiple robots.
Timing critical software.
Reconfiguration of Software Components.

Multiple Redundant Methods
Continuous Replanning

Multiple Redundant Methods

5/19/05 SelfMan 2005 10

Science Target Search
Scenario

• Cooperatively search for targets in the predefined
regions

• Search from predefined viewpoints
• Search for the targets using stereo cameras and various

visualization algorithms

5/19/05 SelfMan 2005 11

Science Target Search
Scenario

5/19/05 SelfMan 2005 12

Science Target Search
Scenario

5/19/05 SelfMan 2005 13

Science Target Search
Scenario

5/19/05 SelfMan 2005 14

Method Regeneration:
Exception Handling

• A rock blocks the view
– Recover by taking the image from a different perspective (i.e.

change the strategy)
• The shadow cast by the rock fails the imaging code from

identifying the objects in view
– Reconfigure the imaging algorithm to work under these conditions

5/19/05 SelfMan 2005 15

Method Regeneration:
Exception Handling

5/19/05 SelfMan 2005 16

Method Regeneration:
Exception Handling

5/19/05 SelfMan 2005 17

Method Regeneration:
Exception Handling

5/19/05 SelfMan 2005 18

Method Regeneration:
Exception Handling

5/19/05 SelfMan 2005 19

Overall Architecture
Planner

Deductive Controller

Plant

Models
Plan Runner

Mode
Estimation

Mode
Reconfiguration

Reconfigurable Vision for
Robust Rover Mapping

5/19/05 SelfMan 2005 21

Reconfigurable Vision
Plant Model

5/19/05 SelfMan 2005 22

Nominal Configuration

5/19/05 SelfMan 2005 23

Contingent Configuration

5/19/05 SelfMan 2005 24

Connection

Connected Unconnected

Command: Disconnect

Command: Connect

Inputs: x

Outputs: x

class Connection ()
{

RawImage image_in;
SegmentedImage image_out;

mode Connected (…) {
primitive method disconnect () => Unconnected; }

mode Unconnected (…) {
primitive method connect () => Connected; }

failure mode Failed (…) { … };
}

Models simplified for
clarity in this and
following slides

5/19/05 SelfMan 2005 25

SegmentColor

Usable TooDark

Inputs: RawImage

Outputs: SegmentedImage

class SegmentColor ()
{

RawImage image_in;
SegmentedImage image_out;

mode Usable ((image_in = Nominal)) { … }

mode TooDark ((image_in = Dark)) { … }
}

5/19/05 SelfMan 2005 26

Block Diagram

TPN

RMPLRMPL
Compiler

TPN Macro
Library

Algorithm Nexus

Common Data
Repository

Suite of Algorithms
FIFOSSSPSDSPAPSP

Kernel

Initialize Mission

Temporal Consistency Check

Tell Consistency Check

Ask Consistency Check

Location Consistency Check

Macro Expansion

Exception Handling Executive

TPN updates

plan updates

exceptions

processed
TPN
data

TPN data

TPN dataCSP
Variables

and
Domains

Constraints

Dynamic
CSP Solver

CSP problem updates

partial
solutions

5/19/05 SelfMan 2005 27

V8={ }

Tell(B=y)

Solution Analysis: Exception
Handling

Start End

V1={ }

VI={V1}

V2={ , }
V3={ , }
V4={ , }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={ }

V5

V6={ }

V6

Tell(A=y)

Tell(A=x)

V7={ , }

V7

Tell(B=x)

Ask(B=x)

V8

Ask Consistency Check

1. Execution begins…
2. An error occurs, and an exception is thrown

Partial Solution

V1={ }

V4={ }

V2={ }

V5={ }

V3={ }

V8={ }

EXCEPTION

5/19/05 SelfMan 2005 28

Solution Analysis: Exception
Handling

Ask Consistency Check
1. Execution begins…
2. An error occurs, and an exception is thrown
3. The exception-handling code is inserted

EXCEPTION

handlerdelay

The handler is the TPN sub-process
corresponding to the RMPL “catch” statement

that matches the thrown exception

The delay represents
the amount of time
spent in the original
process before the

exception was
thrown, plus an
upper-bound on
replanning time

5/19/05 SelfMan 2005 29

V8={ }

Tell(B=y)

Solution Analysis: Exception
Handling

Start End

V1={ }

VI={V1}

V2={ , }
V3={ , }
V4={ , }

V2
V3
V4

Initial Variables

Variables

Constraints

V5={ }

V5

V6={ }

V6

V7={ , }

V7

Tell(B=x)

Ask(B=x)

V8

Ask Consistency Check

Partial Solution

V1={ }

V4={ }

V2={ }

V5={ }

V3={ }

V8={ }

EXCEPTION

1. Execution begins…
2. An error occurs, and an exception is thrown
3. The exception-handling code is inserted
4. Replanning begins, pre-selecting anything

that has already been executed

5/19/05 SelfMan 2005 30

Conclusions
• Models of correct operation permits:

– Detection and Diagnosis of failed components.
– Reconfiguration of Software/Hardware

components to achieve high-level goals
– Describe goals as abstract state trajectories.

• Software can be handled by adding:
– Hierarchy to component organization
– Models of the environment

