
Computer Science Department
Institute of computer Communications
and Applications

ÉC OLE PO L Y TEC H NIQU E
FÉDÉRALE D E LA USAN NE

8TH SEMESTER PROJECT:

INTELLIGENT AGENTS FOR
NETWORK MANAGEMENT

LIONEL MICHAUD

Assistant: Jean-Philippe Martin-Flatin

Lausanne, June 26, 1998

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 2

Table of Contents

Table of Contents ..2

1 Introduction ...4

2 Literature Review ...5

2.1 Agents ... 5

2.2 Network Management in the IP World.. 6

2.3 JAVA .. 8
2.3.1 Architecture Neutral and Portable..8
2.3.2 Multithreaded..8
2.3.3 Distributed..9
2.3.4 Secure...9
2.3.5 Object-Oriented ..10
2.3.6 Database Connectivity - JDBC ..10

3 Investigation of Existing Platforms..11

3.1 Multiagent Systems... 11
3.1.1 Definition ...11
3.1.2 Communication...12
3.1.3 Extra Features...13

3.2 JATLite... 13

3.3 Aglets .. 14

3.4 Concordia.. 15

3.5 Odyssey ... 17

3.6 Voyager... 18

3.7 IA Factory... 18

3.8 RETSINA.. 20

3.9 MAST.. 21
3.9.1 MAST AGENTS...22
3.9.2 NETWORK AGENTS..22
3.9.3 KNOWLEDGE INTERCHANGE...23

3.10 dMARS ... 23

3.11 Miscellaneous.. 24

4 JAFMAS ..25

4.1 JAFMAS Description ... 25
4.1.1 Communication...25
4.1.2 Interaction...26
4.1.3 Coherence and Coordination ...26

4.2 JAFMAS Architecture.. 27

4.3 JAFMAS Object Model.. 28

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 3

4.4 JAFMAS Methodology... 29

4.5 JESS.. 30

5 The Application ..31

5.1 Description.. 31

5.2 Network simulation .. 33
5.2.1 Simple Case: 2 EndHosts 4 Routers.. .33
5.2.2 Second case: n EndHosts 6 Routers ...33

5.3 MAS Implementation ... 34
5.3.1 Router Agent35
5.3.2 End-host Agent35
5.3.3 Message Class..36

5.4 Features Implemented by the MAS ... 36
5.4.1 Connection Admission Control... ...36
5.4.2 Reservation Mechanism37
5.4.3 Translate Demand into Bandwidth.. .37
5.4.4 Unsatisfied Demand..38
5.4.5 Auto-Configuration...38

5.5 Additional Possible Features .. 38
5.5.1 Feedback from Overloaded Routers...38
5.5.2 Optimum Path Search ...39

5.6 Conversations ... 39
5.6.1 EndHostAskConv..39
5.6.2 RoutAcceptConv...40

5.7 User Interface ... 41
5.7.1 User Agent GUI ..41
5.7.2 Router GUI ...41

6 Conclusion ...43
6.1.1 Summary ..43
6.1.2 Benefit..43
6.1.3 Future work ..43

Acknowledgments..45

Bibliography..46

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 4

1 Introduction

The objective of this project is to compile a state of the art on cooperative platforms based
on intelligent agents, and to select of one of these platforms to experiment with the
management of IP multimedia networks. Even though intelligent agents have already been
used in many AI-related research domains, very few of these platforms have been used in
network management yet.

Agent software is a rapidly developing area of research. The word agent is very popular in
the computing press as it is within the artificial intelligence and the computer science
communities. At present, agents are used for more and more applications in very diverse
domains. Agent-based applications have been developed for fields as varied as manufacturing,
entertainment, electronic commerce, user assistance, service and business management, and
information retrieval. According to BIS Strategic Decision, "Agents will be the most important
computing paradigm in the next 10 years. By the year 2000, every significant application will
have some form of agent feature." [2]

With the rapid growth of the Internet, network management is a more and more
demanding domain. Furthermore, the relentless growth in the information-processing needs of
organizations has been accompanied by rapid development in computer and data-networking
technology to support those needs, and an explosion in the variety of equipment and networks
offered by vendors. Network administrators become overwhelmed with a lot of simple and
boring tasks. Most of their work could be automated and simplified by the use of intelligent
software.

Two approaches are possible in order to accomplish network management with intelligent
agents. The first one is to start from the network management point of view and then move
towards the artificial domain, trying to use some artificial intelligence concepts. The second
one involves the opposite approach, that is to say, to start from the distributed artificial
intelligence perspective, investigate on what has been done there, and then try to apply this to
network management.

This document will first introduce some concepts used in the scope of this project
(chapter 2). The primary goal of the project was to find a cooperative platform using
intelligent agents. A detailed explanation of the different platforms investigated will therefore
be given, accompanied with a personal critique (chapter 3). The elected platform, JAFMAS,
will then be described (chapter 4). Finally, an implemented multimedia application based on
JAFMAS will be depicted (chapter 6).

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 5

2 Literature Review

2.1 Agents

There is no standard definition of the term agent on which a consensus exists. Peter
Norvig defines agents as "anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through effectors." [33] Pattie Maes, of the
software agents research group at MIT, has coined her own definition of the term: "An agent
is a computational system that inhabits a complex, dynamic environment. The agent can sense
and act on its environment, and has a set of goals or motivations that it tries to achieve
through these actions."[26] However the term agent remains vague, so let us see some of the
commonly identified agent attributes to have a better view of what an agent can be or do.
[37],[15],[4]

Autonomy. An agent can operate without the direct intervention of humans, which means
that it should have a degree of autonomy from its user. This requires aspects of periodic
action, spontaneous execution, and initiative. That means that the agent must be able to
take preemptive or independent actions that will eventually benefit the user. [14]

Cooperation. Agents can interact with other agents and/or humans. This is often best
viewed as a two-way conversation, in which each party may ask questions to the other to
verify that both sides are in agreement about what is going on. As such, the two parties
interact more as peers in agent-oriented systems. Inter-agent cooperation is a mechanism
by which agents exchange their knowledge, their beliefs and their plans to work together
and solve larger problems, which are beyond their individual capabilities.[12]

Reactivity. Agents can perceive their environment and respond in a timely fashion to the
changes that occur in it.

Pro-activeness. Agents can exhibit goal-directed behavior by taking the initiative. They
can reason about their intentions and beliefs, and accordingly plan their course of action.

Mobility. Agents can move to other environment. They can carry data along with
intelligent instructions that can be executed remotely.

Temporal Continuity. Agents are continuously running processes.

Learning. Agents continuously adapt to changes in the environment. Ideally, there should
be improvement in the behavior of the agent.

The combination of these different features results in different agent types. Here are the most
important types. [9]

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 6

Autonomous agents. Agents that inhabit some complex, dynamic environment, sense and
act autonomously in this environment and by doing so realize a set of goals or tasks.

Entertainment agents. Interactive, simulated worlds providing entertainment to a user.

Information agents. Agents that have access to potentially many information sources and
are able to collate and manipulate information obtained from these sources to answer
queries posed by users and/or agents.

Interface agents. Personal assistants who are in collaboration with the user in the same
environment to provide assistance. The agents observe and monitor actions taken by the
user in the interface, learn from it, and suggest better ways of doing the task. [29]

Reactive agents. A special category of agents which do not possess internal symbolic
models of their environments; instead they act/respond in a stimulus-response manner to
the present state of the environment.

Collaborative agents. These agents emphasize autonomy and cooperation with other
agents in order to perform their tasks. They may have to negotiate in order to reach
mutually acceptable agreements in some matters.

Mobile agents. Mobile agents are computational software processes capable of roaming
wide-area networks. Such agents move from computer to computer and interact with their
hosts. This field is getting more and more important with the development of the World
Wide Web.

Intelligent agents. Agents that carry out some set of operations on behalf of a user or
another program with some degree of independence. Any kind of artificial intelligence
method can be used to give such independence. Intelligent agents usually include one or
more of the agent type described above.

Of course, these agent types can be combined to form hybrid agents. In the future, I will
use the term intelligent agents to designate agents with cooperative, autonomous, intelligent
capacities.

2.2 Network Management in the IP World

In the earliest days of computer communications, it was quite a chore to reliably move
bits from a mainframe to an application terminal. As technology advanced into the late-70’s,
terminal networks evolved into host networks: hosts were attached to a single "packet-
switched" network where they were supposed to communicate. In the mid-80’s, various
economic and technological factors made internetworking feasible. [31]

In an internet, several networks are connected together through the use of routers and an
internetworking protocol. The routers (sometimes called gateways), using the protocol, hide

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 7

the underlying details of the actual networks, in order to provide a uniform service across
networks.

For example, a site-level network might consist of a local area network based on Ethernet
technology. This network, along with several other nearby site-level networks, might be
attached to a regional network, consisting of several routers and point-to-point connections. In
turn, this regional network, along with several other regional networks, might be attached to a
national backbone, consisting of another set of routers. Finally, this national network, might
be connected to several other backbone networks, and have international connections.

As networks grew, standards protocols were needed to allow these networks to
interconnect equipment from multiple vendors. The Simple Network Management Protocol
(SNMP) [5] is an open protocol that was established in the early 90’s to fulfill that need.
SNMP was widely adopted by the Internet Protocol (IP) world to manage local-area networks,
wide-area networks and Intranets, and to a lesser extent, to manage distributed systems. After
that, new technologies suggested new approaches to network management. The Common
Object Request Broker Architecture (CORBA) proved to be a viable alternative to the
traditional client-server paradigm, while intelligent agents started to spread from Distributed
Artificial Intelligence (DAI) to distributed systems. [27]

Large networks cannot be monitored and managed by human effort alone. The
complexity of such systems dictates the use of automated network-management tools. [35] As
network installations become larger, more complex, and more heterogeneous, the cost of
network management rises. A 1992 survey among executives of the 1,000 largest U.S. firms,
indicates the high magnitude of the cost, with over one quarter of firms spending more than
$100,000 on network-management products. [16]

Network management is a very broad domain and several paradigms can be used to
achieve such a goal. A simple taxonomy proposed by Martin-Flatin et al. [27] consists of four
types:

v Centralized paradigms
v Weakly distributed hierarchical paradigms
v Strongly distributed hierarchical paradigms
v Strongly distributed cooperative paradigms.

The aim of this project is to experiment with the last type: strongly distributed
cooperative paradigms. A perfect example of a strongly distributed software using cooperative
methods to solve problems is a multiagent system, that is a group of intelligent agents.

In the scope of this project we will concentrate on managing multimedia services and
networks. These systems involve configuration and delivery of user requested services at the
right time, cost and quality of service (QoS). A typical example is the management of
multimedia application doing some videoconferencing through the Internet. A user would be
able to select a certain quality of service and to reserve it for a certain amount of time. A user
agent would translate that quality of service into bandwidth and interact with router agents in
order to reserve a path through the network. More detailed explanation would be given in
chapter 5.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 8

2.3 JAVA

This section describes in detail various reasons why Java renders itself as a suitable choice
to build MAS framework [13],[19],[28].

2.3.1 Architecture Neutral and Portable

Agents are inherently distributed. Thus, applications must be able to execute anywhere on
the network without prior knowledge of the target hardware and software platform. Java
provides the advantages of architecture neutrality and portability to agent developers.

The solution that the Java system adopts to solve the binary-distribution problem is a
“binary code format” that is independent of hardware architectures, operating system
interfaces, and window systems. If the Java run-time platform is made available for a given
hardware and software environment, an application written in Java can then execute in that
environment without the need to perform any special porting work for that application.
Instead of machine code, the Java compiler generates bytecodes: a high-level,
machine-independent code for an hypothetical machine that is implemented by the Java
interpreter and run-time system.

The primary benefit of the interpreted byte code approach is that compiled Java language
programs are portable to any system on which the Java interpreter and run-time system have
been implemented. The architecture-neutral aspect is one major step towards achieving
portability, but there is more to it than that. C and C++ both suffer from the defect of
designating many fundamental data types as “implementation dependent”. Java eliminates this
issue by defining standard behavior that will apply to the data types across all platforms. Java
also specifies the size of all its primitive data types and the behavior of arithmetic on them.

2.3.2 Multithreaded

As the human world is full of multiple events all happening at the same time, the agent
world should work the same way. Built-in support for threads is one of the most powerful
tools in Java, not only to improve interactive performance of graphical applications, but also
to run multiple events concurrently. Multithreading is the way to obtain fast, lightweight
concurrency within a single process space. The Java library provides a Thread class that
supports a rich collection of methods to start a thread, run a thread, stop a thread, and check
on the status of a thread. Java thread support includes a sophisticated set of synchronization
primitives based on the widely used monitor and condition variable paradigm.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 9

2.3.3 Distributed

In any MAS, agents residing on different machines or different environments need to
communicate information and knowledge about their goals, beliefs and intentions to each
other in order to coordinate and cooperate so as to bring about a coherent solution. Thus
communication is a very important aspect in the development of any MAS. Java especially
lends itself as an extremely suitable choice in this regard. It offers an extensive library of
classes and routines which cope easily with both UDP and TCP/IP protocols, and thus
supports sending both broadcast and directed messages across the network. Moreover, it
provides the feature of RMI (Remote Method Invocation) which is extremely helpful while
creating a family of collaborating agents.

RMI enables the programmer to create distributed Java-to-Java applications, in which the
methods of remote Java objects can be invoked from other Java virtual machines, possibly on
different hosts. It is possible to generate mobile code using RMI as it is possible to transport
objects between client and server. A Java program can make a call on a remote object once it
obtains a reference to the remote object, either by looking up the remote object in the
bootstrap naming service provided by RMI, or by receiving the reference as an argument or a
return value. A client can call a remote object in a server, and that server can also be a client
of other remote objects. RMI uses the Object Serialization feature of Java to marshal and
unmarshal parameters. It does not truncate types and supports true object-oriented
polymorphism. Methods invoked on remote server objects by clients are reachable through the
TCP/IP protocol.

Java also supports broadcasting. It provides a multicast datagram socket class which is
useful for sending and receiving IP multicast packets. A MulticastSocket is a UDP socket,
with capabilities for joining groups of other multicast hosts on the Internet. This is an
extremely useful feature for implementing a MAS. The ability to send broadcast messages
helps in creating a truly scalable and flexible agent framework because the agents do not need
to register with a centralized directory service to be able to receive messages from one another
when they come on line. Also as the agents do not need to know the identity of the receiver
agents in order to be able to send messages to them, there is no necessity for any start-up
protocol. It also saves network bandwidth when the same message has to be sent to all the
agents in a group.

2.3.4 Secure

Java is intended for use in distributed environments. Toward this end, a great deal of
emphasis has been placed on security. Java enables the construction of virus-free, tamper-free
systems. Java is a strongly typed language and it does not support pointers, which make it a
very robust language. The Java run-time system uses a bytecode verification process to ensure
that code loaded over the network does not violate any Java language restrictions. The
authentication techniques are based on public-key encryption.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 10

2.3.5 Object-Oriented

Object-oriented design is a very powerful concept because it facilitates the clean
definition of interfaces and makes it possible to provide reusable software. As a programmer,
this means that you focus on the data in your application and methods that manipulate that
data, rather than thinking strictly in terms of procedures. Java adopts the four principles of
object oriented languages: inheritance, encapsulation, abstraction and message passing
communication.

 Though there are many languages which are object oriented in nature, Java is one of the
few languages which enforces it. The user has no choice but to encapsulate all data in objects.
Since agents are essentially built around a group of different object components, Java is an
ideal language for developing them.

2.3.6 Database Connectivity - JDBC

The Java Database Connectivity kit lets Java programmers connect to any relational
database, query it, or update it using the industry standard query language (SQL). This is a
very useful feature as databases are among the most common uses of software and hardware
today, and any application using Java can easily integrate with preexisting databases to update
the local model of its agents. This is even more useful for MAS as agents usually possess a
knowledge base. As this knowledge base gets bigger, it has to be organized and stored
efficiently. A database connection can be very useful to store all this information.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 11

3 Investigation of Existing Platforms

In order to perform network management with intelligent agents a multiagent platform
was needed. Since so many people are presently working on such systems, a thorough search
of what had been done and what was freely available had to be done. The World-Wide Web
was the main tool for this research, along with the proceedings from ICMAS’95 and
ICMAS’96.

The first goal was to find a platform including multiagent features and some kind of
intelligence. That means the platform had to provide not only the features permitting to set up
a distributed multiagent application, but also, the agents had to possess some reasoning
abilities. Such a platform would have been ideal since the only thing that would have been left
would have been to customize the agents to respond to the particular needs of the application.

It turned out that such an intelligent platform was nowhere to be found. So the approach
adopted was to find a multiagent platform on which some intelligence could be plugged in. It
was important to keep in mind that the platform had to be adaptive and flexible enough to
allow intelligent modules to be plugged in without too much trouble. Lots of people are
working on multiagent systems and therefore a lot of prototype exists out there. However,
very few of them were satisfactory.

Section 3.1 describes multiagent systems. Sections 3.2 to 3.10 present the most relevant
platforms investigated, in order of decreasing interest. The platform adopted for the
application: JAFMAS will be detailed in chapter 4.

3.1 Multiagent Systems

3.1.1 Definition

Multi-Agent Systems (MAS’s) are an outgrowth of the Distributed Artificial Intelligence
community. Durfee et al., define a multiagent system as "a loosely-coupled network of
problem solvers that work together to solve problems that are beyond their individual
capabilities." [3] These problem solvers, which are essentially autonomous, distributed, and
maybe heterogeneous in nature, are called agents. Research in multiagent systems is mainly
concerned with how they coordinate their knowledge, goals, skills, and plans jointly to take
action or to solve problems. The concepts that are important and have to be taken into
consideration in studying a multiagent system are the following:

Communication: What protocol does the system use? Is it flexible? Does the system
provide directed communication and/or multicast communication?

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 12

Programming Language: Is it a standard language? Easy to use? Compatible with other
components? Portable?

Flexibility: Is it easy to adjust the system to a particular application? What are the
constraints and requirements?

Architecture: Is the system object oriented? Layer based? Well designed?

User Interface: Can the agents be visualized? How does the user interact with the
system?

Scalability: Does the system adapt itself to different situations? Can the system be widely
extended?

User friendliness: Is it easy to start using the system? Is the learning curve low?

Identification: How do agents identify one another? Is it a centralized way or through
communication?

Security: Are they any security features provided? Are the communications among agents
encrypted?

Extra features: Are any extra-features available? Are the agents mobile? Are any
coordination constructs available?

3.1.2 Communication

Communication enables the agents to exchange information on the basis of which they
will coordinate and cooperate with each other. In a multiagent system, several ways have been
proposed for agents to exchange information with each other. Agents can directly exchange
messages, or they can organize themselves into a federated system and communicate through
special facilitator agents, or they can broadcast messages. Another possibility is to use a
shared data repository in which information can be posted and retrieved.

In order to address the many difficulties of communication between agents, a first
language called Knowledge Interchange Format (KIF) has been created to represent
knowledge. KIF is a computer-oriented language for the interchange of knowledge among
disparate programs. It has a declarative semantic (i.e. the meaning of expressions in the
representation can be understood without appeal to an interpreter for manipulating those
expressions); it is logically comprehensive (i.e. it provides for the expression of arbitrary
sentences in the first-order predicate calculus); it provides for the representation of knowledge
about the representation of knowledge; it provides for the representation of nonmonotonic
reasoning rules; and it provides for the definition of objects, functions, and relations. [18]

The ARPA Knowledge Sharing Effort (KSE) designed another common language called
KQML. [7] KQML, now adopted by most researchers in the AI domain [11], stands for the

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 13

Knowledge Query and Manipulation Language. KQML is an agent communication language
that is used in systems ranging from research experimental systems to real business
production systems. The advantage of KQML is that is does not standardize on any
representation language. In KQML there is not really a shared semantic but a shared ontology.
When using KQML, a software agent transmits messages composed in its own representation
language, wrapped in a KQML message.

3.1.3 Extra Features

Two other factors were also taken into account throughout the platform research. First the
documentation available with the software: a reasonably detailed and understandable
documentation was required in order to adopt the platform. Second the availability of the
platform: with a null budget, the platform had to be freely available.

The following chapters describe the most interesting platforms found during the
investigation, starting with the one using Java. The platform chosen, JAFMAS, will be
described in greater detail in chapter 4.

3.2 JATLite

http://java.stanford.edu/java_agent/html/

Figure 3.2-1 JATLite is built as a series of increasingly specialized layers

JATLite is being developed by the Computer Science Department at Stanford University.
It provides a set of Java packages that facilitates agent framework development using the Java

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 14

language. JATLite provides basic communication tools and templates for developing agents
that exchange KQML messages through TCP/IP. It defines a special construct called an Agent
Name Server (ANS) which stores all the names and addresses of existing agents. When an
agent is created and connected to the network, it first registers with the ANS. In registering,
the agent passes the ANS its name, port number and the domain of its local host. If an agent
knowingly terminates, it first sends a remove address message to the ANS, which echoes the
message to all the other agents. JATLite also provides special Agent Router functionality
which allows Java applets to exchange messages with any registered agent on the Internet.
The Agent Router allows any registered agent to send messages to any other registered agent
by making a single socket connection to the Agent Router. Messages are forwarded without
the sending agent having to know the receiving agents’ address and making a separate socket
connection with the Agent Name Server (ANS) infrastructure.

Although JATLite does provide essential functionality required for building a multiagent
application, it does not define a methodology for specifying the social behavior of agents.
Moreover, the concepts of the ANS and the Agent Router are inherently centralized in nature.
Each time an agent joins the system, it has to register with ANS; and when it leaves the
system, then the ANS also has to be informed. All communication must go through the Agent
Router. Thus, any application developed using JATLite cannot be truly scalable. [24]

3.3 Aglets

http://www.trl.ibm.co.jp/aglets/

Figure 3.3-1 Aglets Serialization through the network

IBM Japan is developing a framework for Java “Agent Applets”. Some of their work has
been submitted to the Object Management Group (OMG) for consideration in regard to
OMG's request for a Mobile Agent Facility (MAF). Aglets Workbench is a visual
environment for building network-based applications that use mobile agents to search for,
access and manage corporate data and other information. IBM Aglets are mobile Java
programs which may travel and execute in specialized nodes in the network. The Java Aglet

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 15

Application Programming Interface of the framework defines the methods necessary for Aglet
creation, message handling in the network and initialization, dispatching, retraction,
deactivation/activation, cloning and disposing of the Aglet. The Aglets workbench includes an
Agent Web Launcher named Fiji and a Visual Agent Manager named Tahiti. Fiji is a Java
applet based on the Aglets Framework and therefore capable of creating an Aglet and
retracting an existing Aglet into a client’s web browser. Tahiti uses a unique graphical user
interface to monitor and control Aglets executing on a given computer. It also implements a
configurable security manager that provides a fairly high degree of security for the hosting
computer system and its owner. Although, Aglet is more intended to allow agents to move
than a framework for multiagents, it can be combined with JKQML to allow communication
among agents.

Based on KQML, JKQML has been developed by IBM to provide a framework and API
for constructing Java-based, KQML-speaking software agents that communicate over the
Internet. JKQML allows the exchange of information and services between software systems,
creating loosely coupled distributed systems. JKQML provides flexibility for the extension of
the framework, and it supports the following three protocols: [25]

• KTP (KQML transfer protocol): a socket-based transport protocol for a KQML
message represented in ASCII.

• ATP (Agent Transfer Protocol): a protocol for KQML messages transferred by a
mobile agent that is implemented by Aglets.

• OTP (Object Transfer Protocol): a transfer protocol for Java objects that are contained
in a KQML message.

JKQML is based on the 1997 proposal for a new KQML specification.

Aglets Workbench is a very versatile tool for creating secure mobile agent-based
applications, however it does not deal with the important issue of implementing coordination,
cooperation and coherence in agent-based applications. IBM Aglets can only engage in
directed communication as they use the TCP/IP protocol. However, including the new
features of JKQML, Aglets could be the most adequate tool in case some mobility is needed
inside the agent community. Another advantage of Aglets is that it is quite simple to use the
API, it goes pretty fast to get something done, and a very nice user-interface is provide to
control the agents. More investigation would be needed to check if what is behind the API is
as good as the Aglet user interface. [20]

3.4 Concordia

http://www.meitca.com/HSL/Projects/Concordia/

Mitsubishi Electric Information Technology Center of America has developed a
Java-based framework for development and management of network-efficient mobile agent
applications for accessing information anytime, anywhere, and on any device. Concordia
offers a flexible scheme for dynamic invocation of arbitrary method entry points within a

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 16

common agent application. It provides support for agent persistence and recovery and
guarantees the transmission of agents across a network. Concordia has also been designed to
provide for fairly complete security coverage from the outset. Within Concordia, an agent’s
travel plans are specified by its Itinerary. The Itinerary is a completely separate data structure
from the agent itself. Concordia provides two forms of asynchronous distributed events:
selected events and group-oriented events. The event selection paradigm enables agents to
define the types of events they wish to receive. In contrast, group-oriented events are
distributed to a collection of agents (known as an event group) without any selection.

Figure 3.4-1 Concordia server architecture

Although Concordia provides a useful set of services for implementing agent mobility,
security, persistence and transmission, it does not provide any methodology to specify how
agents in a multiagent system coordinate, cooperate and negotiate to bring about a coherent
solution. Emphasis here is on the communication aspect in an agent-based application.
Moreover, the fact that the agent itinerary is outside the agent implies that where the agent
travels is maintained in a separate logical location regarding the place where the agent lives.
This results in Concordia agents not being totally autonomous. [6]

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 17

3.5 Odyssey

http://www.genmagic.com/technology/odyssey.html

Figure 3.5-1 Typical Odyssey Application

Odyssey is General Magic’s implementation of mobile agents in Java. It is an outgrowth of
Telescript, the first mobile agent commercially available. Odyssey is an agent system
implemented as a set of Java class libraries that provide support for developing distributed
mobile applications. Odyssey technology implements the concepts of places and agents. It
models a network of computers, however large, as a collection of places. A place offers a
service to the mobile agents that enter it. A communicating application is modeled as a
collection of agents. Each agent occupies a particular place. However, an agent can move
from one place to another, thus occupying different places at different times. Agents are
independent in that their procedures are performed concurrently. Odyssey provides Java
classes for mobile agents and stationary places.

Odyssey is General Magic's flagship to enter the arena of Java-based mobile agent
computing. The current version of Odyssey provides the basic functionality of mobile agents
but it does not go far beyond. The developer must adhere to a very rigid structure while
implementing mobile applications. Unlike IBM Aglets and Concordia, it does not provide an
extensive security mechanism. Odyssey does not support broadcast communication and
speech-act messaging. Presently on the downhill slope, Odyssey has been passed by its
concurrent mentioned above. Nonetheless, the director of IBM's Aglets program has recently
joined the General Magic's Odyssey team, so there might be a future convergence between the
concepts of these two tools. A new platform is promised for this summer. [30]

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 18

3.6 Voyager

http://www.objectspace.com/voyager/index.html

Voyager is a Java-based agent-enhanced Object Request Broker (ORB) developed by
ObjectSpace Inc. It allows Java programmers to quickly and easily create sophisticated
network applications using both traditional and agent-enhanced distributed programming
techniques. It provides for creation of both autonomous mobile agents and objects. Voyager
agents roam a network and continue to execute as they move. Voyager can remotely construct
and communicate with any Java class, even third party libraries, without source. It allows
seamless support for object mobility. Once created, any serializable object can be moved to a
new location, even while the object is receiving messages. Messages sent to the old location
are automatically forwarded to the new location.

Voyager is a very efficient tool for constructing agent-based distributed applications.
However, it does not provide any classes for defining the social behavior of agents, does not
support broadcast communication and speech-act messaging, and does not pay any specific
attention to providing security. It also emphasizes on the mobility aspect, feature not required
in the scope of this project. [36]

The MAS's brought up until here are the most famous in the agent world. Although they
provide some extensive features, most of them emphasize on mobility and do not take enough
care of the social behavior of the agents. The following MAS's will be more concerned by the
agents and their interaction with other agents rather than the mobile aspect.

3.7 IA Factory

http://www.bitpix.com

Bits and Pixels is an American company using intelligent agents for various applications.
Tired of starting implementing their agents from scratch, they developed what they call the
"IA Factory". The goal of the "IA Factory" is to supply the programmer with an API so that
he does not have to go through the entire network programming and debugging. This
framework gives you a generic agent which one can extend to give the agent its specific
behavior. In the simplest case, a table of behavior is sufficient. As the agents get more
complicated, a class can be extended to give the agent complex and interesting behavior.

The "IA Factory" comprises five packages:

bitpix.agent : - Full client-server agents compatible with sockets
 - Extensible command language processor for agents

- Compatibility with KQML
- Rule processor compatible with KIF

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 19

bitpix.list : - Simple tree-based data format
- String parsing facilities
- Compatibility with KQML

 bitpix.think : - Logical deduction engine
- Back-propagation neural network
- Classification neural networks
- Suitable for hybrid AI systems

bitpix.move : - Networks, clients, servers, communicating processes
- Autonomous bots
- Intelligent Agent simulations
- Modular filter processes
- Animation classes
- Models for KQML exchanges

 bitpix.draw : - Structured graphics objects
- Shaded graphics classes
- IFS graphics for textures and natural objects
- 2D transform geometry
- 3D transform geometry

All this really looks good except you have to pay to get the full version. The complete
commercial release cost about $1500. That’s the only way to get the Java source code for all
the packages described above. Some source codes, as the AI factory, are freely available. So
if one wants to see how agents are generated, one can. However, if one wants to go into the
code generated and customize the agents to get them accomplish some complex behavior, one
will get in trouble since there is no way to get what’s behind the API. In other words, that
means that one will see that to create an Agent you have to write:

Agent myAgent = new Agent()
But the Agent source code is not available.

Customization possibility is given through a file that can be passed as parameter to the
agent constructor. That file needs to describe a table of behavior according to a given syntax.
Even though this opportunity is interesting, the possibilities stay very limited.

A more extended possibility is to write CLIPS code. CLIPS code is what gives the
intelligence to the agents. A set of rules can be defined and a forward chaining system will
interpret them. The Java Expert System Shell (JESS) is used as the forward chaining system.
JESS supports the development of rule-based expert systems, which can be tightly coupled to
code written in the Java language. This is a very interesting possibility but it does not suppress
the necessity to change the Java code generated in order to implement a consistent application.

The IA Factory is really interesting since it is the only platform to provide additional
intelligent feature to the multiagent infrastructure. Although, part of the source code is not
available, the "Intelligent Agent Factory" stay, however, very useful for little agent
applications. The idea to integrate an interpreter for a rule language is very good. JESS can be
integrated in any Java application to give it the ability to “reason”. This idea will be examined
in more details in section 4.5.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 20

3.8 RETSINA

http://www.cs.cmu.edu/~softagents/retsina/

Figure 3.8-1 Agent organization

RETSINA, developed at Carnegie Mellon University, stands for Reusable Environment
for Task Structured Intelligent Network Agents. The RETSINA framework is being used to
develop distributed collections of intelligent software agents that cooperate asynchronously to
perform goal-directed information retrieval and information integration in support of
performing a variety of decision-making tasks. A collection of RETSINA agents forms an
open society of reusable agents that self-organize and cooperate in response to task
requirements. Their designer focused on three crucial characteristics of the overall framework
that differentiate RETSINA from others:

• Use of a multi-agent system where the agents operate asynchronously and collaborate
with each other and their user(s)

• Agents actively seek out information
• Information gathering is seamlessly integrated with problem solving and decision

support

A Middle Agent Software has been developed to face the connection problem. The
connection problem is to find the other agents that might have the information and capabilities
that you need. Agent Name Server and Matchmaker can be created so that agents can
communicate with each other. The RETSINA Agent Name Server is a set of Java programs
that allows your software agents to communicate over the Internet.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 21

Figure 3.8-2 Agent Architecture: Functional view

However it seems that only some particular issues are addressed in the software available.
The set of Java classes provided emphasized on how agents can find information or advertise
their capabilities. No particular attention is given regarding the behavior of each agent and
how they interact with other agents. The Name Server API provided use a centralized
approach, making the system less scalable and fault-tolerant. As RETSINA is an open system,
any agent on the Internet can communicate and interact with the actual community.

Even though some new concepts are used in the way agents cooperate with each other and
dynamically arrange themselves in community it seems like RETSINA is not the adequate
platform for the need of network management.

3.9 MAST

http://www.gsi.dit.upm.es/~mast/

The Multi-Agent System Tool (MAST) has been developed by the Intelligent Systems
Group of the Department of Telemetric Systems Engineering at the Technical University of
Madrid for the Esprit-9119 project MIX. The MAST architecture has been conceived as a
general purpose distributed framework for the cooperation of multiple heterogeneous agents.
This architecture has been redesigned and implemented within a research project investigating

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 22

a particular class of hybrid systems: those integrated by connectionist and symbolic
components.

MAST offers a decentralized model of control, uses the mechanisms of message passing
for communication purposes and is implemented from an object-oriented perspective.
Moreover, some features are introduced that make this platform especially suitable for
symbolic/connectionist hybridization.

The MAST architecture consists of two basic entities: the agents and the network through
which they interact.

3.9.1 MAST AGENTS

From an external perspective, an agent is structured as a set of elements:

• Services: functionality offered to other agents.
• Goals: self-imposed tasks (functions that an agent carries out in self-interest, not to

meet a demand from another agent).
• Resources: information on external resources (services, ontologies, groups, etc.)
• Internal objects: data structures shared by all the processes that are launched by the

agent to carry out service requests or to achieve goals.
• Control: specification of how service requests are handled by the agent.

Several communication primitives are implemented, including different synchronization
mechanisms (synchronous, asynchronous and deferred communications) and higher level
protocols, such as Contract Net.

3.9.2 NETWORK AGENTS

At the network level, a yellow-page service is offered by a specialized agent, the
Yellow_Pages (YP) agent. At birth, agents register with a particular YP agent, giving their net
address and information on the services they offer, and the services they might need. Agents
can also subscribe to groups. Groups refer to dynamic sets of agents, and can be used as
aliases in service petitions. Thus, these petitions can be addressed to an individual agent, to
the agents subscribed to a group, or to all the agents offering the service. The YP agent
responds to a registration request providing all the information that an agent needs to know
(e.g., the addresses of the agents offering services that it will request). Such information is
updated continuously by the YP agent.

A YP agent acts as a sort of active repository, not as a router. It registers and diffuses
information regarding the structure of a set of agents who cooperate in a particular
application. Therefore, different YP agents can be simultaneously active, even in the same
machine (provided they use distinct ports for communication). By using the information
received from the YP agent, the remaining application agents can establish direct
communication links, thus making the risk of network collapse (due to saturation of the
communication channels in the YP agent) negligible.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 23

3.9.3 KNOWLEDGE INTERCHANGE

One important problem regarding the exchange of messages in a set of agents is how to
facilitate the mutual understanding of the content of these messages. The solution adopted by
MAST permits the inclusion of a parameter in message headers expressing the language used
to codify its content. Moreover, the content can make reference to concepts in an ontology
shared by the sender and the recipient agents alike. The current implementation includes tools
for the automatic translation of messages written in a reduced version of CKRL (Common
Knowledge Representation Language) both to and from C++ code. CKRL was designed by
the MLT consortium (project ESPRIT-2154) as an interchange language for symbolic
machine learning algorithms.

On the other hand, it is always possible to compose the content of messages in a free
format. But, in this case, sender and recipient need to agree previously on the structure of the
body of the messages that they interchange.

Also a specialized language (Agent Description Language, MAST-ADL) has been
designed to simplify the specification of the agents cooperating in solving a problem in a
hybrid framework. Finally, some tools have been implemented to translate the MAST-ADL
description files to standard C++ programs.

The MAST architecture is very interesting and it is probably one of the most complete
multiagent system tools. The fact that it is implemented in C++ makes it, however, less
portable and multifunctional than Java-based frameworks. Most of what MAST services
provide (interoperability between heterogeneous agents) are points that do not even need to be
addressed in Java as it is included in the language. Also, MAST is composed of a multitude
of C++ libraries and it does not seem very user friendly to a profane.

3.10 dMARS

http://www.aaii.oz.au/proj/dMARS-prod-brief.html

dMARS is an agent-oriented development and implementation environment designed for
building complex, distributed, time-critical systems. It is developed by the Australian
Artificial Intelligence Institute (AAII). It is intended for rapid configuration and ease of
integration, and it helps with system design, maintenance, and reengineering. dMARS agents
are designed according to the BDI (Beliefs, Desires, and Intentions) model. They are able to
reason about their environment, their beliefs, their goals, and their intentions. They model
their expertise as a set of context-sensitive plans. These plans can both react to changes in the
environment and proactively pursue the agent's objectives. Using dMARS, multi-agent
systems can be implemented as lightweight processes within a single UNIX process, as
separate UNIX processes on the same machine, or as a distributed configuration
communicating over a TCP/IP network. Interfacing with other processes is achieved via a
simple, well-defined communication protocol. The system provides comprehensive libraries
and components to support the development, implementation and testing of an application,
therefore minimizing the need to develop application-specific support code.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 24

Figure 3.10-1 Interaction of dMARS processes with foreign processes

dMARS is written in C/C++ and thus does not provide for true architecture neutrality and
portability. Unlike Java-based systems, applications developed in dMARS can only run on
limited platforms and require using different compilers for different platforms. It supports
only a limited number of C++ compilers. [10]

3.11 Miscellaneous

A lot of other platforms exist out there. The above list does not attempt to be exhaustive. It
is also possible that other platforms we did not come across are much better than the ones
depicted above. Some other platforms include: Cybele Agent Infrastructure, AgentTalk,
AgentTcl, Telescript, Swarm, Echelon, COOL, and InteRRap. Those platforms have not been
investigated thoroughly and have been rejected either because they are commercial products
and the code is not available, or because they are implemented in a non portable language (i.e.
not Java), or simply because they did not fit the requirements needed for this particular kind of
application.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 25

4 JAFMAS

JAFMAS stand for Java-based Agent Framework for MultiAgent Systems. Deepika
Chauhan has developed JAFMAS during his thesis at the University of Cincinnati. [9] As
mentioned above, JAFMAS is the platform elected for implementing network management
via a multiagent system. JESS is the inference engine that has been chosen to give our agents
some intelligence. JESS will be described in section 4.5.

4.1 JAFMAS Description

http://www.ececs.uc.edu/~abaker/JAFMAS/

Though numerous agent-building tools are currently available, most of these tools suffer
from the drawback of being essentially communication centered. They do not define the social
behavior of the agents in a community of agents. Java-based Agent Framework for
Multi-Agent Systems, as the name suggests, is a Java-based framework for representing and
developing cooperation knowledge and protocols in a multiagent system. The framework
enables the agents to work together and coherently achieve their goals and those of the
multiagent community as a whole. JAFMAS defines a generic methodology for multiagent
application development and provides a set of services that relieves the developer from the
effort of programming cooperation mechanism form scratch. It guarantees that essential
interoperation, communication and cooperation facilities are available to support agent
application developers. JAFMAS is concerned with coordinating intelligent behavior among a
collection of intelligent agents forming the multiagent system. Agents should coordinate their
knowledge, plans and goals to that they can take actions which results in a joint coherence
solution to the problem at hand.

JAFMAS addresses special attention to the following issues:

1. Communication protocol
2. Interaction between agents
3. Coherence and Coordination in the multiagent community

4.1.1 Communication

As seen in section 3.1.2, communication enables the agents in a multiagent system to
exchange information on the basis of which they coordinate their actions and cooperate with
each other. JAFMAS support both directed and broadcast communication. It also enables the
user to combine these two approaches to form federated systems. The directed communication
mechanism is implemented via the RMI mechanism.

The broadcast mechanism is very useful in situations where the output of one agent is the
input to many other agents or the agent does not know the identity and addresses of other

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 26

agents in the system. Also, if the length of the message is substantial, and there are a large
number of agents in the system, broadcast communication saves network bandwidth, as
multiple copies of the same message do not need to be made. This mode of communication
also enables the implementation of subject-based addressing. Each agent can subscribe to a
group and any messages intended for the subject is sent only to the agent subscribing to that
particular group.

On the other hand, directed communication is useful when an agent is engaged in a dialog
with a particular agent, and knows exactly whom to send the message to. Broadcast
messaging gives an agent a way to request for special services or to advertise his presence.
Based upon this information, the agent can thereafter engage in a directed communication
with the agent in concerned.

As JAFMAS uses Java’s RMI mechanism for directed communication, the agents can
transport objects or even agents across the network. That means mobility would be possible
even if the framework does not explicitly support it.

4.1.2 Interaction

Interaction means a type of collective action wherein one agent takes an action or makes a
decision that has been influenced by the presence or knowledge of another agent. The
inherently heterogeneous and distributed nature of a multiagent system makes the
implementation of interaction mechanism among agents a difficult process.

JAFMAS support speech-act based messaging, which means agents can communicate
with their peers by exchanging messages and interact together through explicit linguistic
actions. The message structure of the framework enables the JAFMAS agents to express their
beliefs and their intent using an agent-independent semantics. Each message can be associated
with a “performative”, which is the speech-act component of the message. The “performative”
determines what one can “do” or “perform” with the content of the message. Agents can thus
convey belief, knowledge, or intention. The content of a message can be as simple as an
affirmative or negative answer, or it can be as detailed as transmitting a complete object.

4.1.3 Coherence and Coordination

Coherence refers to how well the entire system, as a whole, behaves while solving a
problem. Coordination is more the property of interaction among a set of agents performing
some collective action.

JAFMAS adopts the view that the coordination problem can be solved by having
knowledge about the interaction processes taking place among the agents. JAFMAS defines
conversations. A conversation is an agent’s plan to achieve some goal, based on interactions
with other agents. Agent conversations can be visualized as automata models. As such,
conversations contain alternative courses of execution based on the expected actions of other
agents in the organizations. Conversation execution begins in an initial state and terminates in
a final state. Within a conversation, agents can exchange messages according to mutually
agreed conventions, change state and perform local actions. Each conversation has its own
thread of execution, therefore agents can engage in multiple conversation at the same time.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 27

In order to implement a MAS that gives a coherent solution, JAFMAS allows the analysis
of agent conversation models for logical consistency and system coherency. As conversation
can accept an automata representation, effective mathematical models can be used for
conversation representation. Petri nets are used in JAFMAS to analyze coherency and
coordination in agent conversations. [8] Petri nets have emerged as a very promising
performance modeling tool for systems that exhibit concurrency, synchronization and
randomness.

4.2 JAFMAS Architecture

Implemented in JDK 1.1, JAFMAS provides sixteen main Java classes as shown in
Figure 4.2-1 (name of classes between parenthesis). Those classes provide the essential
communication, interaction and coordination mechanisms to application developers by
dividing the services provided into distinct layers.
Figure 4.2-1 shows the entire JAFMAS architecture and the classes composing the different
layers. The local model is application specific and is left to the user to implement.

Figure 4.2-1 JAFMAS Architecture

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 28

4.3 JAFMAS Object Model

The following picture shows the JAFMAS object model. Only the most important classes
are shown. In order to implement a JAFMAS application, four classes needs to be inherited
and extended.

• The CreateAgent class provide a graphical interface to let the user enters the
parameters to an agent creation.

• The Agent class implements the local behavior of the agent
• The Conversation class is extended for each conversation that the agent can have.
• The ConvRule class is extende for each rule changing the state of a conversation.

Figure 4.3-1 JAFMAS Object Model

AgentCreateAgent

MulticastComm

Conversation

Message

AgentOpInterfa

ConvOpInterface

ConvRule

creates

MsgQueue

DirectedComm

sendMsg()
setRcvdMsg()

joinGroup()
leaveGroup()
receive()
sendMsg()

has

contains

creates

receives

creates
creates

creates

creates

addsMessage

creates

creates

MsgRouter

routeMessage()

setRecvdDirectedMsg()
setRecvdMulticasMsg()
subscribeTo()
unsubscribe()
startConversation()

CreateAgent()

initializeRules()
ruleControlFn()
initializeRules()

action()
transmit()

receives

addMessage()
removeMessage()

getSender()
getReceiver()
getcontent()

...

RequestResrcProvider
findResource()
Respond()

has

DisplayAction()

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 29

4.4 JAFMAS Methodology

JAFMAS proposes a five-step methodology for building a multiagent application. This
methodology first focuses on the logical issues of the problem being considered and then
converges to the implementation. These primary stages in MAS application development with
JAFMAS are:

1. Identifying the agents: Starting with a list of aims we want the system to satisfy, we
begin by considering various entities that will be interacting with each other to achieve
this global aim. These entities represent the agents in the system. Upon identifying the
agents, we try to clarify the aims of each agent and the services they provide. We
divide these agents into different categories by grouping the agents with similar aims
and services into a single category. These categories help us in identifying the agent
classes in the application. After identifying the agent classes, we identify the
application specific classes that each agent class may use.

2. Identifying the conversations: According to Organization Theory the coordination
problem can be tackled by having knowledge of the interaction processes among the
agents. This knowledge is about the problem solving capability of the entire system,
and not of specific agents. When developing agents, we view the world as being
composed of intelligent things. We begin to model the interaction between these things
in the form of conversations. We identify every possible conversation an agent can
engage in, and represent those conversations by developing an automata model for
each of them. These different automata models identify the different conversation
classes in the application. After identifying the conversations, we identify the
application specific classes that the conversations may use.

3. Identifying the conversation rules: Each conversation is represented by an automata
model. Alternative actions of an agent produce different states in the conversation
(automaton) and the current state of a conversation influences how the agent will
act/react in the next moment. Thus conversations are rule-based descriptions of what
an agent does in certain situations. We need to identify these various actions of an
agent and the conditions which bring about rule execution. All this helps us in
identifying the conversation rules for each conversation.

4. Analyzing the conversation model: In order to design a multiagent system that finds
a coherent solution to the entire system problem, it is important to do an analysis of the
logical consistency of all agent conversations. They should be analyzed to verify the
coherency of the system. Automata models like concurrent finite state machines, and
Petri Nets can provide useful tools for checking system coherency found by analyzing
the conversation models. If any inconsistency exists in the model, the design is
returned to step 2 of the methodology for redefinition of the conversations.

5. MAS Implementation: As a final step in the methodology, we need to choose a
suitable tool for multiagent application implementation which ensures communication,
interoperation and coordination support. JAFMAS provides a set of Java classes that
can be used to code MAS applications as a part of this methodology.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 30

4.5 JESS

http://herzberg.ca.sandia.gov/jess/

The Java Expert System Shell (JESS) [17] is a clone of the popular expert system shell
CLIPS [34], rewritten entirely in Java. With Jess, programmers can conveniently give Java
applets and applications the ability to “reason”.

Developed by Ernest J. Friedman-Hill at the Sandia National Laboratories in California,
Jess is effectively an interpreter for a rule language borrowed from CLIPS. Given CLIPS
heritage this rule language is basically a small, idiosyncratic version of LISP, making Jess a
LISP interpreter written in Java. Like CLIPS, Jess uses the Rete algorithm to process rules, a
very efficient mechanism for solving the difficult many-to-many matching problem.

Although Jess can be used as an interactive command-line interface, it can easily be
integrated in any Java application. There are even optional Jess commands that let the user
create and manipulate Java objects from Jess. Some extra-features are provided so that a
reduced version of Jess can be run in an applet. Jess also possesses a networking interface
and a model for graphical user interface.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 31

5 The Application

5.1 Description

Even though a large part of the semester was dedicated to the platform investigation, the
final goal of the project was to use the most appropriate platform for network management.
The application developed restricted itself to the particular case of network management for
multimedia application.

Multimedia network applications allow users connected to the network to transfer
multimedia information to each other. Such applications require the use of a large network
bandwidth. The purpose of the “intelligent network” developed is to satisfy as best as possible
the demands or the users by accepting as many requests as possible. Intelligent agents can
achieve this goal by interacting both with each other and with the application users, in order to
satisfy these requirements. Two types of agents are needed:

♦ User Agents: they implement a layer between the user and the network
♦ Router Agents: they are attached to a particular router and communicate with that

router in order to make it as efficient as possible

Figure 5.1-1 below describes the ideal model for such an application.

♦ The user stations, connected to the network, are the end-hosts. Usually an end-host
has a unique router through which it is connected to either an internet or an
intranet.

♦ A user agent plays the part of an intermediate between the user and the network. It
should display a simple graphical user interface to let the user interact with the
system. The user agent should also show some intelligence abilities. For example it
should be able to remember and learn from the user interaction and react according
to it. Typically it is an “interface agent” as described in section 2.1.

♦ The network nodes are the routers managed.
♦ A router agent is attached to each router to manage it. In the ideal case, the agents

should be attached to real router doing some substantive routing. The agent does
not have to live in the router address space; it can also run on a proxy machine and
use standard TCP/IP channels to communicate with it. The agents would then talk
to their respective router via the Simple Network Management Protocol (SNMP)
[35], or possibly through the simpler more efficient HTTP protocol.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 32

Figure 5.1-1 Ideal model

As no network was at hand during the realization of the project, a simple network had to
be implemented to be able to test the agents and develop their abilities. In the simple
simulated version, all that a router is supposed to do is forward messages where the routing
table tells it to. Due to time limitations, routers have been implemented and included inside
the router agents. This means that the router agent is also routing messages and acting as the
router it is supposed to manage. Therefore, no communication is necessary between these two
actors. Also, the communication among intelligent agents has been implemented via message
interchange without any use of speech-act languages such as KQML.

H H

H

Net

RR
SNMP or

HTTP

KQML, …

R
Network node
Router H

End Host
Router
Intelligent
Agent

A

A

AA

A A

A

A A

R R

R

R R

Network

A A

A

A
User
Intelligent
Agent

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 33

5.2 Network simulation

5.2.1 Simple Case: 2 EndHosts 4 Routers

To develop and to test the application, a simple network has first been set up. The network
was designed to be large enough so that the concepts could be tested but not too complex so
that development was not too time consuming. The network chosen was constituted of four
routers and two end-hosts. Management of this network involves six agents, among which
two of them are interface agents. This simple arrangement has also the advantage of
possessing a redundant path: messages going to the opposite end-host can go through the
upper router or to the lower one. That way we will be able to test if dynamic routing is
possible, that is, if the upper router is too busy, then the agents should be able to change the
routing table in order to make the packets take the lower path.

Figure 5.2-1 Simple network scheme

5.2.2 Second case: n EndHosts 6 Routers

In order to test the agents at a larger scale, a more consistent network was necessary. Even
though each agent can run anywhere on the Internet, the application was tested on one
computer. Since only a restricted number of processes can run on the machine the network
could not be too large. Therefore, the second network has been implemented as shown on
figure 6.2-2. This second case allows as many end-hosts as desired to be attached to each
router even though only two are represented in the figure below. This scheme lets network
traffic go in diverse direction and therefore gives the opportunity to test router overload and
dynamic configuration.

Figure 5.2-2 Second Network scheme

R
R

R

R

R

R
Ap IA

ApIA

Ap IA R
R

R

R ApIA

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 34

5.3 MAS Implementation

As said previously the network implementation has been included inside the agents.
Therefore two main actors constitute the system: the router agent (including the router
implementation) and the end-host agent. This system, following the JAFMAS infrastructure,
is organized as pictured in the object model below.

Figure 5.3-1 Overall agent object model

EndHostUserInterface

EndHost

RouterUserInterface

Router

Message inputBuffer

AgentOpInterface

 Agent

Conversation

EndHostConversations RouterConversations

contains

 send/
receives

creates creates

has has

has

RoutingTable
has

Packet

encapsulates

Message
 send/
receives

 send/
receives

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 35

5.3.1 Router Agent

The router agent is an agent managing a network node. It is composed of two layers:

a) Router Layer

The router layer is the network itself. Its goal is to route the arriving messages according
to their destination. A simple routing table is associated to it so that the router knows where to
forward the messages. A fixed size buffer is also used to temporary stock the arriving
messages. The router treats the messages as fast as it can. If the buffer is overloaded, the extra
messages are discarded. It is the work of the agent to synchronize the traffic so that no
messages are lost. Each router possesses also a certain bandwidth. That means that no more
bandwidth than what is possessed by the router can be allocated to user requests. A simple
graphical user interface is provided so that information can be observed on what is happening.
One can also change the router bandwidth, option useful for testing and debugging.

b) Intelligent Layer

The intelligent layer is the actual intelligent agent. It communicates with other agent’s
intelligent layers and with the router layer in order to manage the node properly. When it has
to accomplish a goal that involves other agents, it creates a Conversation object (inherited
from JAFMAS) to talk with other agents and reach the given objective.

5.3.2 End-host Agent

The end-host Agent plays the role of intermediate between the user and the network. A
graphical interface is displayed so that the user can interact with the system. Ideally, the end-
host agent should interface the multimedia application, so that the whole agent infrastructure
is invisible to the user. In our case, as described in section 5.7, the user has to explicitly
reserve some bandwidth or send messages. Only fake data is sent, however the simulated
network is able of transporting real data and therefore act as a real network.

However, the end-host agent is not only a composition of graphical component. The
underlying layer should support an intelligent infrastructure able of conversing with the
network. An end-host is usually attached to a unique router. The end-host agent will have to
talk with his router agent in order to reserve some bandwidth. It should also be able to
interpret the demand requested by the user. For example, if the user asks for a good
connection, the end-host agent should know (or learn with feedback from the user) that a good
connection is about 500 kb/s.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 36

5.3.3 Message Class

The message class encapsulates all the information exchanged amongst agents. Every
instance of that class has a performative variable. This variable represents the nature of
interaction that is going to take place. The class provides methods for specifying both the
sender and the receiver agent. It is also possible to specify the intent of the message. The
intent enables the sender agents to express the intention which required them to send the
message, and the receiver agents to filter the message upon looking at only the intent slot. It
also facilitates message routing. Messages are of two general types:

♦ Declarative messages are used to announce the presence of an agent. This type of
message is used to set up the network at the beginning: each agent broadcasts his
name and then waits for the agent he is connected to to answer.

♦ Content messages contain a description of the piece of knowledge being
accompanied with the actual data. They are used to transport data packets along the
network. A data packet can be assimilated to an IP packet on the Internet. It possesses
the sender address, the destination address and the actual data.

5.4 Features Implemented by the MAS

5.4.1 Connection Admission Control

The first feature implemented by the agent infrastructure is to admit or refuse connection
according to the network load. A user asks his agent for a connection to another end-host for a
certain bandwidth. The user agent has then to communicate with his router agent to determine
if the new connection can be accepted or not. In order to implement that service a path
reaching the desired destination has to be found throughout the network. The simple following
algorithm provides a solution assuming “I” is a router agent.

If I have bandwidth then
If I have next neighbor

Ask next neighbor
If next neighbor ok then

Send Accept to previous neighbor
Else

Send Refuse to previous neighbor
Else /* the end-host is reached */

Send Accept to previous neighbor
Else /* no bandwidth available */

Send Refuse to previous neighbor

Algorithm 1 Simple Connection Admission control

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 37

The difficulty in implementing this algorithm is to find the way back. The Routing table
only gives information about how to reach a host, but several paths can lead to the same host.
The solution adopted is to include a stack of visited hosts in the message so that the path used
by the message is contained in itself.

This first algorithm works fine. However, it does not take into account the fact that
redundant paths can exist in the network. This second algorithm corrects that problem.

If I have bandwidth then
If I have neighbors

While I have neighbors
Ask neighbor
If neighbor ok then

Send Accept to previous neighbor
exit

Send Refuse to previous neighbor
Else /* the end-host is reached */

Send Accept to previous neighbor
Else /* no bandwidth available */

Send Refuse to previous neighbor

Algorithm 2 Alternative Path Connection Admission Control

5.4.2 Reservation Mechanism

This new mechanism allows a user to reserve a channel between him and another user.
The naïve approach would be for the router agent to simply reserve the demanded QoS before
sending back the “accept” message in the previous algorithm. However, this approach does
not prevent several users from reserving the same resources. In other words, some
concurrency issues have to be taken into account. To avoid such a situation, the bandwidth
variable has been “locked” so that only one process at a time can change its status.

5.4.3 Translate Demand into Bandwidth

In order to make the user interface more friendly, the system should allow the user to
choose between different levels of QoS rather than directly specifying a network bandwidth. It
is then up to the agent to translate that QoS specification into the corresponding bandwidth.
For the time being, this feature is implemented via a simple mapping table between the
displayed levels and the bandwidth. A possible improvement would be to set up the QoS
according to the destination desired. For example, a channel from Switzerland to Africa would
have a much lower QoS than a channel inside a local area network.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 38

5.4.4 Unsatisfied Demand

If the router agents refuse a demand, the user can then choose amongst two utilities.

♦ The user agent is not only intelligent, but also possesses some kind of simple memory.
Indeed, if the router agents refuse a demand, the user agent can nonetheless memorize
it. The user has therefore the possibility of delegating the tedious task of renewing the
request at regular interval to the user agent. The user can also specify at what
frequency the agent should recontact the network. When the request is finally
accepted, the user is notified and the multimedia session can start. This feature is
implemented via a thread that sleeps during the given interval, and then recontacts the
network.

♦ If the QoS is not essential to the user, he can alternatively choose to request the user
agent to find the highest available QoS. In this case, the user agent will renew the
demand with decreasing QoS levels until the demand is accepted.

5.4.5 Auto-Configuration

Another feature implemented is the dynamic configuration of the network. When a host
goes down and an alternative path stays available, the neighboring hosts should update their
routing table so that the new coming requests will go through the alternative path. There are
two ways for a router to know that one of its neighbors is down:

♦ The first one is that the neighbor informs the router that it is about to go down before
dying. This is certainly not very realistic

♦ The second one is that when the router tries to contact the neighbor no response is
obtained.

In both cases, the routing table should be updated as soon as the failure is detected.

5.5 Additional Possible Features

5.5.1 Feedback from Overloaded Routers

If a router is overloaded by incoming messages, his attached agent should contact the
neighboring sending agents to inform them that messages are being lost. The agents should
then coordinate their efforts to find a more efficient solution. The simplest solution would be
to contact the sending end-host to warn them about the situation.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 39

5.5.2 Optimum Path Search

Although the previously adopted algorithm (Algorithm 2) finds a path if it exists, it does
not necessarily find the best one. An alternative solution would be to search through all the
paths available to reach a given end-host and to reserve the optimum path, taking into account
the cost of using each router. This type of approach could, for example, be of use in the cases
where a pricing mechanism would be set up for each router. This would typically be the case
if the routers were owned by different companies and each company had its own tariff. Such
an algorithm would always find the cheapest path to talk to a given end-host. A compromise
between price and QoS is another possibility that could also be considered.

5.6 Conversations

In order to implement the reservation mechanism described in section 5.4.2, two
“JAFMAS conversations” have been implemented.

5.6.1 EndHostAskConv

EndHostAksConv is the conversation started by the user agent when a reservation is
needed. The figure below represents the states through which the conversation can go, and the
rules allowing to move from one state to the other.

R1 Transmit: ask Qos to router agent
R2 Receive: refuse from my router

DoAfter: display qos refused
R3 Receive: accept from my router

DoAfter: display qos accepted

Figure 5.6-1 EndHostAskConv

S0 S1
Done

R1
R2

R3

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 40

5.6.2 RoutAcceptConv

RoutAcceptConv is the conversation started by each demand received by a router agent. It
follows Algorithm 2 described above.

R1 Receive: Change message
Suchthat: I have bandwidth and I have
neighbors
Transmit : change to next neighbor

R2 Receive: Change message
SuchThat: I have bandwidth and no next
neighbor
Transmit: Accept to previous neighbor

R3 Receive: Change message
SuchThat: I don’t have bandwidth
Transmit: Refuse to previous neighbor

R4 Receive: accept from next neighbor
Transmit: accept to previous neighbor

R5 Receive: refuse from next neighbor
SuchThat: no alternative path
Transmit: refuse to previous neighbor

R6 Receive: refuse from next neighbor
SuchThat: alternative path
Transmit: change to alternative neighbor

Figure 5.6-1 RoutAcceptConv

S0

S1

Done

R1

R4 R5
R2

R3

R6

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 41

5.7 User Interface

5.7.1 User Agent GUI

First of all the user has to click the connect button in order to be connected to his network.
Once connected, the user can select the end-host name to which he wants to communicate
with and the QoS at which he would like the channel to be established. After reserving a
channel, the number of messages to be sent can be selected and the send button will send
those messages through the network.

Figure 5.7-1 User Agent GUI

5.7.2 Router GUI

The red level shows how much bandwidth is reserved for the router.
The blue level shows how many messages are contained in the buffer.
The bandwidth can also be set via a multiple-choice roll-down menu for testing purpose.

Figure 5.7-2 Router Interface

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 42

Figure 5.7-3 shows the agents in action for the second implementation of the network.
Four users are connected to a network of six routers.Two connections are actually reserved:
Jess - Jack and Jack – Jazz..

Figure 5.7-3 Agents in action

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 43

6 Conclusion

6.1.1 Summary

All in all, we have seen that using intelligent agents for network management is absolutely
feasible. Although the application implemented is still very small, some interesting concepts
have been implemented and proved to be efficient. The ideas that have come out of this
research could certainly be used at a much larger scale. In particular, the elected platform has
fulfilled our expectations, and could certainly be of great use for this type of application. The
multiagent infrastructure set up is only a small glimpse of what could potentially be done for
network management. Although the speed of execution of the code is far from being
impressive, advance in technology should help overcome this handicap in the near future. For
instance, compiling the code rather than interpreting it would give an impressive speed-up on
a PC running Windows.

6.1.2 Benefit

Since the project did not have an explicit restrictive specification, I was forced to look for
the information by myself and to evaluate it. Indeed, a large amount of time was spent on the
platform investigation. Even though browsing the web for long hours can get boring, a lot was
learned in the way information can be obtained. At first, I had the impression I was not being
very efficient, but I now realize that those long hours are necessary and pay off in the long
run. The time invested in finding an appropriate platform largely balanced out the time spared
during the development.

In order to do the investigation, a theoretical background in artificial intelligence and
network management was necessary. Starting off at a novice level, I have learned a lot in the
network management domain. The concept of intelligent agents was also new for me and was
of a great interest.

6.1.3 Future work

A simple application applying some basic concepts has been built around a multiagent
infrastructure. But now that the infrastructure is set up and the network traffic is simulated,
more time could be dedicated on network management itself. A wide range of possibilities is
waiting to be implemented in order to make the system more efficient. Future work on this
project should focus on making the agent more intelligent and giving them an appropriate way
of conversing with other agents.

A speech-act language could be used in order to have a more flexible conversation
protocol. KQML seems to be an appropriate language for this kind of application. JKQML
[25], the Java version of KQML implemented by IBM, should be investigated in more details,

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 44

as it would provide all the needed KQML features and be very easy to integrate in the actual
system which is already implemented in Java.

The actual implemented agents show some intelligence, but a lot more could be done. In
order to improve the agent ability to reason, Jess [17], the Java expert system shell could be
incorporated inside each agent. With Jess our agents would be able to reason and act
accordingly.

But what is reasoning without knowledge? A knowledge base would possibly be
necessary to give the agents something to reason about. Then, if the knowledge base gets
larger, each agent could maintain a database connectivity so that our agents would now have a
brain and a memory.

With such agents, the system would then be able to provide services like:

1. Learn from the user interaction, and help him during session set up
2. Dynamic configuration of the network to be as efficient as possible
3. If network bandwidth is charged, a pricing mechanism should find the cheaper path to

reach a given end host.
4. The actual reservation mechanism is unidirectional, an option should allow a user to

reserve a bi-directional path so that his partner can communicate back. Also, a group of
users should be able to interact via a dedicated channel to do video-conferencing for
example.

5. Agents could also provide some coordination mechanism. For example, an end host agent
should help a user to locate and contact a partner. More information in that domain can be
obtained in a paper by Albayrak et al. [1].

6. The QoS allocation could be done according to a market-based approach, as described in
the Yamaki paper [38].

7. And many more …

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 45

Acknowledgments

I wish to thank Professor Jean-Pierre Hubaux and the entire ICA staff for giving me
the opportunity to participate in their research study and use their material. In particular, I am
very grateful to my assistant, Jean-Philippe Martin-Flatin, for his continual and supportive
help throughout the semester. Finally, it was a pleasure to work with my colleague,
Christophe Andrey, with who I worked during the first part of the semester.

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 46

Bibliography

[1] Albayrak Sahin, Haase Raik, Riegel Holger, The Unified Messaging Agent Service
(UniMAS), DAI Lab, Technical University of Berlin, Germany

[2] Aparicio, M.,"IBM Intelligent Agents", FIPA Opening Forum Proceedings, Yorktown,
New York, 1996

[3] Appleby, S & Steward, S., Mobile Software Agents for Control in Telecommunications
Networks, BT Technological Journal 2, pp. 104-113, April 1994

[4] Bradshaw M. Jeffrey, An Introduction to Software Agents

[5] Case J., Fedor M., Schoffstall M. and Dawin J., RFC 1157. A Simple Network
Management Protocol (SNMP), IETF, May 1990

[6] Concordia, Mobile Agent Computing – A White Paper,
http://www.meitca.com/HSL/Projects/Concordia/MobileAgentsWhitePaper.html,
Mitsubishi Electric Information Technology Center of America, 1997

[7] DARPA Knowledge Sharing Initiative, External Interfaces Working Group,
Specification of the KQML Agent-Communication Language, June 1993

[8] David R. and Alla H., Petri Nets and Grafcet - Tools for modelling discrete event
systems, Prentice Hall, 1992.

[9] Deepika Chauhan, JAFMAS: A Java-based Agent Framework for Multiagent Systems
Development and Implementation, ECECS Department, University of Cincinnati, 1997

[10] dMars, http://www.aaii.oz.au/proj/dMARS-prod-brief.html, Australian Artificial
Intelligence Institute (AAII), 1996

[11] Finin Tim and Fritzson Rich, KQML - A Language and Protocol for Knowledge and
Information Exchange, Computer Science Department, UMBC

[12] FIPA application Types, http://www.cselt.stet.it/fipa/fipa_rationale.htm, 1996

[13] Flanagan David, Java in a Nutshell, 2nd edition, O'Reilly, May 1997

[14] Foner L., What is an agent anyway? : A Sociological Case Study, MIT Media Lab,
Cambridge, MA, 1993

[15] Foner N. Leonard, What’s an Agent, Anyway?, Agents Group, MIT Media Lab

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 47

[16] Forrester, Source : Adatpted from Forrester Research, Inc. (May 1992)

[17] Friedman-Hill J. Ernest, JESS – The Java Expert System Shell, Distributed Computing
Systems, Sandia National Laboratories, Levermore, CA, 1998

[18] Genesereth R. Michael, Knowledge Interchange Format: Specification, Stanford
University, March 1995

[19] Harold Elliotte Rusty, Java Network Programming,1stedition, O'Reilly, February 1997

[20] IBM Aglets, IBM Aglets: Programming Mobile Agents in Java, A White Paper,
http://www.ibm.co.jp/trl/aglets/whitepaper.htm, IBM Tokyo Research Laboratory, 1996

[21] ICMAS '95, Proceedings of the 2nd International Conference on Multi-Agent Systems,
The AAAI press, 1995

[22] ICMAS '96, Proceedings of the 2nd International Conference on Multi-Agent Systems,
The AAAI press, 1996

[23] ITU-T, Recommendation X.711. Data CommunicationNetworks - Open Systems
Interconnection (OSI); Management. Common Management Information Protocol
Specification for CCITT Applications. ITU, Geneva, Switzerland, March 1991.

[24] JATLite, JATLite overview,
http://java.stanford.edu/java_agent/html/JATLiteOverview.html/, Stanford University,
1997

[25] Java IBM Yamato Lab, http://www.alphaworks.ibm.com/formula/jkqml/, April 98

[26] Maes Pattie, MIT Media Laboratory Project, Software Agents,
http://casr.www.media.mit.edu/groups/casr/maes.html

[27] Martin-Flatin J.P., A Survey of Distributed Enterprise Network and Systems
Management Paradigms, Submitted to JNSM, Special Issue on Enterprise Network and
Systems Management, December 1997

[28] Niemeyer Patrick and Peck Joshua, Exploring Java, 1stedition, O'Reilly, 1996

[29] Nwana H.S., Lee L. & Jennings, Coordination in Software Agent Systems, British
Telecommunication Technology Journal 14, pp 21-42, October 1996.

[30] Odyssey, Odyssey Frequently Asked Question,
http://www.genmagic.com/agents/odyssey-faq.html, General Magic Inc., 1997

[31] Rose T. Marshall, The simple book : An introduction to Networking Management,
Second Edition, Prentice Hall, 1996

[32] Rumbaugh James, Object Oriented Modeling and Design, Prentice Hall, 1991

Intelligent Agents for Network Management 29/06/98

EPFL - ICA 48

[33] Russel Stuart & Norvig Peter, Artificial Intelligence: A Modern Approach, Prentice Hall,
1995

[34] Savely Robert, CLIPS Reference Manual – Advance Programming guide, 1997

[35] Stallings William, SNMP, SNMPv2 and CMIP : the Practical Guide to Network
Management Standards, Addison-Wesley Publishing Company, 1993

[36] Voyager, Voyager Technical Review,
http://www.objectspace.com/voyager/voyager_white_papers.html, ObjectSpaceInc, 1997

[37] Wooldridge Michael, Jennings R. Nicholas, Intelligent Agents: Theory and Practice,
Submitted to Knowledge Engineering Review, October 1994.

[38] Yamaki Hirofumi, Wellman P. Michael, Ishida Toru, A Market-Based Approach to
Allocating QoS for Multimedia applications, Departement of Information Science,
Kyoto University, Japan.

