EURECOM

Professional Thesis

XML and the Push Model
in Web-Based Management

Claire LEDRICH
August 2001

Company : AT&T Labs - Research

180, Park Avenue,Florham Park, NJ 07932, USA
Advisor : Jean-Philippe Martin-Flatin
Supervisor : Refik Molva, Eurécom

Corporate Communications

Institut Eurécom

Abstract

The management of IP Networks has been in constant evolution throughout these years.
SNMP is the most commmonly used protocol to manage a network device in IP Networks.
SMI is used for standard data representation. And yet, with the growth of Internet
technologies as well as distributed applications, the shortcomings of SNMP have become
more and more obvious. In this project, we further developed the Java Management
platform JAMAP, a research prototype that implements the WIMA architecture designed
by J.P Martin-Flatin in his Ph.D. Thesis. JAMAPO0.4, released at the end of July, fully
implements the WIMA architecture and focuses on distribution aspects ad XML.

Resume

La gestion des réseaux IP a été en constante évolution ces derniéres années. SNMP
est le protocole le plus communément utilisé pour gérer une machine sur des réseaux
IP. SMI est utilisé pour la représentation standard des données. Et pourtant, avec la
croissance des technologies Web ainsi que des applications ditribuées, les manques de
SNMP sont devenus de plus en plus évidents et de nouvelles techniques ont été élaborées
dans le domaine des réseaux et des systémes IP. Durant ce stage, nous avons poursuivi
le développement de JAMAP, un prototype de recherche qui implémente 1’architecture
WIMA décrite par J.P.Martin-Flatin dans sa thése de doctorat. JAMAPO0.4, disponible
depuis fin Juillet suit I’architecture de WIMA et insiste sur les aspects de distribution
et sur XML.

Acknowledgments

This internship took place at AT&T Labs - Research in Florham Park, New Jersey. I
simply wish to thank my advisor Jean-Philippe Martin-Flatin for giving me the oppor-
tunity to work on such an interesting project, and for all his help and advice during this
first real work experience. I also wish to thank Chuck Kalmanek for his enthusiasm. I
sincerely thank Gina Wright for her help.

I am also grateful to all JGuru newsgroups contributors who offered their help on various
subjects.

Contents

1 Introduction 8
1.1 Background 8
1.2 My Contributions 8
1.3 Outline of thereport 9

2 The Communication Model 11
2.1 Push Model vs.Pull Model 11

2.1.1 Why not use the Pullmodel 7. 11

212 ThePushmodel 12

2.2 HTTP-Based Communication 13
2.2.1 Why use HTTP for the communication between agent and man-

AET T L e 13

2.2.2 MIME Multipart 14

2.2.3 Self-Describing Data 0. 14

23 XML . . .o e 15

2.3.1 Why use XML preferably 7 15

2.3.2 Management Data Representation in XML 15

3 Web Technologies 16

3.1 Servlets 16
3.1.1 Whatisaservlet? oL 16
3.1.2 Why use servlets? 16

3.2 Applets e 17

CONTENTS 5
3.2.1 Limitations of applets loaded in a browser 17
3.2.2 The security model of JDK1.2 applets 17
323 ThelJavaplug-in o 18

3.3 Java Serializationo 18
34 XML . . . e 19
341 XML Overview00 i i 19
3.4.2 XML DTDs and XML Schemas 19
3.4.3 The choices made for JAMAP 20
JAMAP High-Level Architecture 22
4.1 Three - Tier architecture o 22
4.2 JAMAP Overview e 24
4.3 Management Station Applets L. 24
4.3.1 DataSubscription Applet 24
4.3.2 The RuleEditor Applet 26
4.3.3 The Mapping Appleto 27
4.3.4 EventNotification Applet 28
44 Agent Servlet 28
4.5 ManagementServer Servlets o Lo oo 29
JAMAP Detailed Design 33
5.1 Communication components 33
51.1 Units. o e 34
5.1.2 Subscriptiono 35
5.1.3 Evento 35
5.2 The Management Station 36
5.2.1 DataSubscription applet L oo 36
5.2.2 RuleEditorApplet 37
5.2.3 Operations 38
5.2.4 MappingApplet Lo 39
5.2.5 Operations 40

CONTENTS

5.2.6 EventNotificationApplet 41
53 The Agent L e 42
5.3.1 Get and GetTable Servlets 42
5.3.2 PushDispatcherServlet o0 43
5.4 The DataCollector 44
5.4.1 The PushedDataCollectorServlet 44
5.4.2 Operations e 45
5.5 The Notification Collector 45
5.5.1 Operations e 46
5.6 The EventManager e 47
5.6.1 Classes. e 47
5.6.2 Operations e 48
Conclusion 50
6.1 Summary and Contributions L. 50
6.2 Future Work 51

Chapter 1

Introduction

1.1 Background

During these six months spent at AT&T Labs - Research, I got to know more about the
IP world. More precisely, I worked in the field of IP networks and systems management.
Up to the twenty-first century, the management of IP networks and systems has relied
exclusively on SNMP, the protocol and the management architecture. SNMP was simple
and allowed great interoperability. The first RFC for SNMP, SNMPv1 was isssued by
the IETF in 1990 and three years later, every vendor had to support SNMP on all its
devices. SNMv2 did not work that well and in 1998, SNMPv3 was issued by the IETF.
But the relevance of SNMP was put into question. Actually, customers wanted to be
able to manage systems as well as networks. Whereas most IP netowrks were mostly
managed with SNMP-based management platforms, the management of IP systems relied
on proprietary non-SNMP systems. In fact the situation at the end of the 90s had become
radically different from the situation when SNMPv1 was issued by the IETF. Customers
need to integrate networks, systems, application, service and policy management... which
was not the case in 1990. Another problem was the object oriented paradigm and the
development of distributed applications. The main points to work on are: the network
overhead, data compression, manage devices across firewalls and alleviate the workload
on managers. There are many alternatives, from Web technologies to mobile agents,
CORBA or intelligent agents. None of them have really succeeded yet.

1.2 My Contributions

In his PhD work, Jean-Philippe Martin-Flatin, my advisor, has tackled all of the pre-
vious problems and has created a new management architecture called WIMA. JAMAP,
a research prototype was developed and implemented some of the features decribed in
WIMA. My task at AT&T has been to focus on the distribution aspects and the com-

1.3. OUTLINE OF THE REPORT 9

munication model so as to implement all the features described in Jean-Philippe Martin-
Flatin’s PhD thesis. I have therefore tested JAMAP on an alost real-life environment at
AT&T.

1.3 Outline of the report

In Chapter 2, we take a look at the communication model WIMA and its specifications.
Since JAMARP relies heavily on Web technologies, in Chapter 3, We identify the Web
technologies used in the prototype. After this background information, we actually look
at JAMAP architecture. In Chapter 4, we try to get the big picture through looking
at its high level design and in Chapter 5, we detail its main functionalities. Finally we
conclude in Chapter 6.

Chapter 2

The Communication Model

2.1 Push Model vs.Pull Model

In Network Management the push and pull models are two different approaches for
exchanging data between an agent and a manager. In the pull model, the manager(
i.e.,the client) sends a request to the agent(i.e., the server) which the server then answers.
This is called polling and is the most commonly used management-data transfer in SNMP
management architectures for regular and ad hoc management. And the push model is
usually only used for sending notifications. Martin-Flatin showed that the push model
suits regular management better than the pull model[3] . WIMA actually advocates the
use of the push model both for regular management and notification delivery.

2.1.1 Why not use the Pull model ?

First, using the push model saves some network bandwidth. As a matter of fact, the
network overhead generated by polling is caused by the redundancy in the messages
exchanged between the manager and the agent.

GET OD=1.3.6.1.2.1.2.2.1.4.3
MANAGER o AGENT
1.3.6.1.2.1.2.2.1. 4.3

Figure 2.1: Redundancy in the Pull model

12 CHAPTER 2. THE COMMUNICATION MODEL

With the push model, instead of asking regularly for the value of the same variable
and getting a response, the agent sends regularly the value of this variable without
being asked to send it each time. It is estimated that the network overhead is roughly
divided by two. Then, the agent in the push model is more intelligent. In the SNMP
management architecture, the manager is usually responsible for everything. Agents are
more powerful than they used to be and cost less than managers. Therefore, it is possible
to transfer some of the workload to the agents. This improves the scalability of the whole
management system.

2.1.2 The Push model
The Push model is based on publish-subscribe and consists of three major phases:

e Publication Phase
e Subscription Phase

e Distribution Phase

The Publication Phase

During this phase, the agent publishes the information models(SNMP MIBs, CIM
Shemas, etc.) and the kind of notifications it can send. These data are available at fixed
URLs that the administrator will visit later.

The Subscription Phase

During the Subscription phase, the administrator browses the network map, goes to
the agents’ URLs and loads the Subscription applets on the agent via a secure relay.
Using the DataSubscriptionApplet, the administrator decides which MIB variables and
at what frequency he wants to subscribe to. Using the NotificationSubscriptionApplet,
the administrator decides which notifications the manager should receive.

The Distribution Phase

The Distribution phase consists in delivering MIB Data and notifications to the man-
ager. Regarding data collection, we have a PushScheduler on the agent that tells when
to send which data to which manager. Once the manager receives the data, it applies
a set of rules to the values of the variables and decides whether or not to generate an
event. As for delivery, the agent is supposed to have a health monitor that regularly
checks the agent’s health. When a problem is detected, the health monitor sends a
message to a notification generator that generates a regular SNMP notification that is

2.2, HTTP-BASED COMMUNICATION 13

sent to the management server. The management server therefore receives two types
of events: notifications sent spontaneously by the agents and events generated on the
management server through applying rules. An event correlator on the event manager
then analyzes the events and tries to find the root cause for these events in order to
reduce redundancy and drop some events. The architecture of JAMAP will be analyzed
in detail in Chapter4 and Chapter5.

2.2 HTTP-Based Communication

2.2.1 Why use HTTP for the communication between agent and man-
ager 7

Martin-Flatin chose to use a persistent connection between the manager and the
agent|3]. For security reasons, if we need to go across a firewall for instance, this persis-
tent connection needs to be initiated by the manager not the agent, which means that
communication must be initiated by the client in a client-server architecture. To do this,
distributed programming gives us three communication technologies:

e Sockets

They have two major advantages: they are bidirectional and easy to program with.
But they also have certain drawbacks which are time-outs and firewall crossing.
Actually, if the push period is a bit longer than the time-out value, the manager
will have to reconnect to the agent, which will cause CPU overhead. The second
problem appears if we need to go across a firewall between managers or manager
and agent. Most firewalls filter out UDP, and let through only a few ports for TCP.
Large organizations can manage these last security issues but small and midsize
enterprises often cannot.

e Java RMI
Like simple sockets, Java RMI offers bidirectional communication.In addition it is
fully object-oriented. But using Java RMI also has several drawbacks: it requires
that the agents embed a full JVM, which most price-sensitive devices do not also,
Java RMI is slow to execute and costs a lot in CPU and memory. Furthermore, the
communication between RMI clients is based on firewall-sensitive sockets, hence
the same issue as described above.

e HTTP
Seeing that the previous techniques were not firewall-friendly, Martin-Flatin de-
cided to base IP Network management on HT'TP. HT'TP is connection-oriented,
which means that one cannot establish a connection in one direction from the client

14 CHAPTER 2. THE COMMUNICATION MODEL

to the server and later send data in the opposite direction. For security reasons, the
manager is to initiate the communication since the manager is trusted compared
to the agent which can be anywhere outside the network. The client-server model
is reversed here[3]| . The client is the manager and the server is the agent. It is a
request-response protocol. The connection has to be established by the manager
but according to the push model, the actual data transfer is initiated by the agent.
So how can we have the server send an infinite number of replies to one single
request fron the client 7

2.2.2 MIME Multipart

HTTP can be used for pushing data, except that you have to give an explicit response,
contrary to SNMP with which you send explicit requests (get, set etc). Here Martin-
Flatin used the same idea as Netscape, that is, the server will send an infinite reply to one
single GET request, using the multipart type of MIME. At each Push cycle, the agent
will send one MIME Part including the descriptions and values of all the MIB variables
the agent had subscribed to. Notifications and Management Data use two different TCP
connections.

MIME Message MIME Part
HTTP Header Header Header Data MIME Boundary
MIME Part
Header Data MIME Boundary

Figure 2.2: Example of HT'TP and MIME headers

2.2.3 Self-Describing Data

As said before, we use MIME to separate different bulks of data. In order to describe
the type of Management data transferred fron the agent to the manager, we use the
Content Type field of the MIMEPart. This parameter has to define two different things:
the information model: whether it is SNMP, if yes, which version, ot if it is CIM or OSI
the encoding: whether it is XML, Serialized Java, BER etc. Let’s have a look at examples
of MIME types:

o SNMPv1-to-XML
o SNMPv2-to-SerializedJava

e SNMpv3-to-BER

2.3. XML 15

Here we only studied the Serialized Java and XML encoding. In order to avoid any
compliance problems, Martin-Flatin decided to use this format:

Content-Type:application/mgmt ;mapping:RFC2571-to-XML;version=1 or Content-Type:application/mgmt;m

With this flexible Content-Type model, any new information model or any new encoding
could appear, WIMA would be able to support it. Here is an example of HTTP and
MIME part headers for a response sent by the agent after receiving a request from the
manager.

2.3 XML

2.3.1 Why use XML preferably ?

JAMAP allows us to use any type of data representation, but there are several ad-
vantages to using XML. First, XML is easy to learn and it is not expensive, since most
XML editors and parsers are available for free. Second, XML is application-domain in-
dependent and allows project managers in software development to save money. Third,
XML can easily be understood by users, which simplifies debugging. Fourth, XML has
a low footprint on the agent. One drawback of XML is that parsers available tfay are
slow, and validation is inherently slow.

2.3.2 Management Data Representation in XML

Management Data encoded in XMI is self-describing and allows multiple information
models. For example, a manager may well be in charge of two different management
domains with two different information models. In the release of JAMAP that we de-
veloped during this project(JAMAP 0.4), the communication model can be based either
on : HTTP/MIME/XML or HTTP/MIME/SerializedJava.

Chapter 3

Web Technologies

JAMAP relies heavily on inter-servlet communication and applet-to-servlet or servlet-
to-applet communication. These servlets and applets are loaded by HT'TP Servers. The
HTTP Server we used during the tests was Jigsaw 2.2.0, the latest version to date of the
W3C HTTP Server. Early versions of JAMAP were tested with an Apache Server but
there were serious buffering issues which made us switch to Jigsaw.[7]

3.1 Servlets

3.1.1 What is a servlet?

Servlets are a Java-based improvement over CGI scripts that were typically written
in a script language such as Perl. They are modules of Java code that run in a server
application. They are the counterpart of applets on the server side. Servlets make use
of the Java standard extension classes that are included in the package javax.servlet
and the package javax.servlet.http in the case of HT'TP requests. Since Servlets are
written in Java, they provide a highly portable means to create server extensions in a
server and operating-system independent way.

3.1.2 Why use servlets?

Although the traditional way of adding functionality to an HTTP Server is through
the Common Gateway Interface, servlets have several advantages over CGI. CGI is a
language-independent interface that allows a server to start an external process, which
gets information about the request via different environment variables and writes the
response to its standard ouputstream. Each request is answered in a separate process by
a separate instance of the CGI program. Here are the main differences between the two:

3.2. APPLETS 17

e Servlets do not run in separate processes, which removes the overhead of creating
a new process for each request.

e A servlet stays in memory between requests whereas a CGI program would need
to be loaded and started after each request.

e A servlet can be run by a Servlet Engine in a restrictive sandbox, which allows for
a secure use of untrusted servlets.

The Web server draws a link between URLs and the servlets.In JAMAP we use HTTP
servlets instead of CGI servlets. In order to initialize a servlet, at start-up time, a
server application loads the Servlet class and creates an instance by calling the no-args
constructor. Then it calls the Servlet’s init method. The latter is guaranteed to be called
only once during the Servlet’s lifecycle. When a client performs a request, the server
invokes a method of the HTTP servlet depending on the HTTP method used in the
request. For example, requesting a URL results on a HTTP GET request, and invokes
the doGet method of the servlet. As most HTTP servers (including Jigsaw) support
multithreading, several clients may invoke concurrently the same method of the same
servlet, and the same servlet can be shared by multiple persistent connections.

3.2 Applets

3.2.1 Limitations of applets loaded in a browser

The fact that JAMAP uses applets allows an administrator to keep an eye on the
management of his network, whatever his geographical location (at work, at home etc).
As we will see in Chapter4, the administrator only needs to have a computer with a
browser. The applets in JAMAP and their Graphical User Interfaces (GUI) use Sun’s
Swing toolkit. Even though Swing is resource-hungry, it is still one of the best toolkits
today, especially with its look and feel effects. Here we are using JDK1.2 applets whose
security model is much more elaborate than JDK1.1 applets.

3.2.2 The security model of JDK1.2 applets

In JDK1.2, applets running in a browser run in a restricted sandbox-like environment.
The new architecture they benefit from lets users grant Java applets permission to access
certain specific system resources outside their restricted environments. The new archi-
tecture is very flexible, but because the default behavior for applets running in restricted
environments is no access to system resources, all access to system resources such as file
systems or networking facilities is not allowed unless specifically granted. In JDK1.2
security, there are 3 keywords with which we have to deal:

18 CHAPTER 3. WEB TECHNOLOGIES

e Permissions:

They are the core of Java Security and represent access to various resources such
as files, sockets etc. A security policy is made of numerous permissions:

e Policy:

The mapping of these permissions to classes is referred to as policy and written in
a policy file.

e Security Manager: The Security Manager then reads the policy file and grants or
forbids to certain resources depending on the permissions it read.

One of the main problems of running applets in a browser context is that a user does not
have easy access to the options for running the JVM. There is no simple way to deploy
and use customized policy files.

3.2.3 The Java plug-in

The lack of support for the latest version of the JRE in the default JVM of Netscape
is solved by using the Java plug-in. It supports the standard Java 2 SDK(i.e. JDK1.2.x)
and its security model. All applets run under the standard applet security manager,
which prevents potentially malicious applets from performing dangerous operations such
as reading local files. RSA-signed applets can be deployed using the Java plug-in. Ad-
ditionnally, the plug-in runs applets the same way in both Netscape Navigator and
Internet Explorer. So we used the Java plug-in and the HTML Converter, which tells
the browser to use the JRE defined in the plug-in and not its internal JVM. By default,
the applets still generate a security exception due to the restrictions placed on down-
laded code. Here, since we were working in an Intranet, we decided not to use signed
applets, but simply to manually define the installation security policy, since the applets
that need special permissions are only those on the Data collector trying to acces the
agent servlet or the applets on the Event Manager trying to access the data collector.
Scalability is not a severe issue here and we can afford to sign applets, the process of
importing signatures to the “client” machines will always be feasible. JDK1.3 brought
several enhancements, including full support for RSA signatures and full interoperativity
with Verisign’s code-signing certficates.

3.3 Java Serialization

Serialization allows any complex Java object to be translated into a byte stream. The
goal is to represent the state of this object in a serialized form sufficient to reconstruct
the object as it is read. It can be used in two different ways:

e Remote Method Invocation (RMI) i.e. communication between objects via sockets.

3.4. XML 19

e Lightweight persistence, i.e. a way to archive an object for use in a later invocation.

Two streams ObjectInputStream and ObjectOutputStream are used to write and read
objects. Objects containing references to other objects are processed to serialize (and
later deserialize) all required objects. The keyword transient in object declaration is
used to prevent this object to be serialized. This is useful when you protect sensitive
information or functions. For example a file descriptor contains a handle that provides
access to an operating system resource and being able to forge a file descriptor would
allow some form of illegal access, since restoring state is done from a stream. In JAMAP,
Serialization was used for both reasons. It provided a simple way to communicate via
sockets, before XML was used, and the lightweight persistence provided by serialization
allowed us to store rules and the agents’ configuration.

3.4 XML

3.4.1 XML Overview

XML is a technology for the Web. HTML is a Markup Language, and was designed for
hypertext, not for information in general. XML marks up content with tags to convey
information. The tags delimit the content and XML syntax allows us to define structures
of arbitrary complexity. Allof this is done with ordinary text, not binary data formats.
XML allows general meta-information, has built-in internationalization and platform-
independence, and is on its way to be the format for structuring information. An XML
document is simply a text with markup tags and other meta-information.

3.4.2 XML DTDs and XML Schemas

When working with XML, you have two different options:

e XML Document Type Definitions (DTDs)

e XML Schemas

XML DTDs represent a simple way to specify the rules by which XML documents are
written. A DTD is a set of information that explains the rules used by a designer to
extend the core rules of XML syntax and be able to describe an application domain. In
order to cope with an increasing complexity of XML documents, one may refer to several
DTDs in one application; That resulted in name collisions and ambiguity. To address
this issue, the W3C decided to develop XML Schemas and namespaces. According to
the W3C’s Recommendation 'Namespaces in XML’ , a namespace is :

20 CHAPTER 3. WEB TECHNOLOGIES

A collection of names, identified by a URI reference, which are used in XML Documents
as element types and attribute names.

XML Schemas, conversely, are written in XML, allow the use of multiple namespace,
and provide for strong typing of content. We will show a very short example of an XML
DTD and its translation in XML Schema:
from R.Anderson,M.Birbeck Professional XML, Wrox Press 2000.

<VELEMENT Name (Honorific?, First, MI?, Last, Suffix?)>
<!ELEMENT Honorific (PCDATA)>

<VELEMENT First (PCDATA)>

<!ELEMENT MI (PCDATA)>

<YELEMENT Last (PCDATA)>

<!ELEMENT Suffix (PCDATA)>

"7’ stands for optional. The corresponding XMLschema:
<Schema ...>

<element name=’’Name’’>

<type>

<element name="’Honorific”’

type="string’’ minOccurs="’0"’ maxOccurs="1"/>
<element name="’First”’

type="’String’’/>

<element name="’MI"’

type=""String’’minOccurs=""0’" maxOccurs=""1"/>
<element name=’Last’’

type="’String’’/>

<element name="’Suffix’’
type=""String’’minOccurs=""0"" maxOccurs=""1"/>

</Schema>

3.4.3 The choices made for JAMAP

In JAMAP, we used XML Schema and the event-based Simple API for XML to process
XML messages with the XML parser from jclark , from the package com. jclark.xml.sax

3.4. XML

21

as advised by R.Anderson in Professional XML

Chapter 4

JAMAP High-Level Architecture

4.1 Three - Tier architecture
In a client-server model, we can have two different architectures:

e Two-Tier architecture It is the simplest of all client-server architectures. In this
model, the client talks directly to the database, without any intervening server. It
is typically used in small environments. The server is a more powerful machine
that services the client with a database management system. It accesses databases
either on the same machine or behind it. The client then has both presentation
logic and application logic responsibilities.This model has the advantage of being
very simple but it is not scalable. When yo uhave more than 100 users, performance
starts to deteriorate. Below is an example of a two-tier architecture.

[
—1

o L_

Presentation Logic Data Access Logic

Appl i cation Logic Data Storage

Figure 4.1: Two-Tier Architecture

4.1.

THREE - TTER ARCHITECTURE 23

e Three-Tier architecture This one is more complicated. A three-tier architecture
addds a middle-tier between the client and the database management server. This
middle layer can be used for a number of things, including application servers.
In JAMAP, the three-tier architecture is not completely implemented.For now the
Management Server and the Data Server are on the same machine. We have not
used a formal data server yet. Briefly, the regular manager is split in three(see
Figure 3.2):

1.

The Management Station The machine responsible for the presentation logic,
any machine with an embedded browser.

. The Management Server The machine resposible for application logic, a fixed

powerful dedicated machine.

. The Data Server The machine responsible for the data access logic.

Managenent Station Managenent Server Agent

J S - L S LS

Dat a Server

Figure 4.2: Three-Tier Architecture

We have three kinds of interactions:

1.

Between the Management Station through the Management Server, and the
Agent

This is the case when the manager on the Management Station wants to
subscribe to MIB variables. The Management Server is used as a proxy to
authenticate the manager. Such a three-tier architecture allows us to control
the connections to the agent in case of a firewall between the Management
Station and the Management Server and betweem the Managent Server and
the Agent.

. Between the Management Station, through the Management Server, and the

Data Repository

24 CHAPTER 4. JAMAP HIGH-LEVEL ARCHITECTURE

During the subscription phase, the Agent should communicate its configura-
tion, ie its SubscriptionTable to the Data Server.

3. Between the Agent and the data repository

This is the case during the distribution phase, the data leaves form the agent,
is analyzed within the Management Server and is logged in the Data Server.

4.2 JAMAP Overview

The big picture of JAMAP is depicted in Figure 3.3. The links with arrows indicate
interactions between components in one or more directions. As we said before the Man-
agement Station can be any machine as long as is has an embedded Web browser. The
Management Server is a server machine, in our tests, the Management Server was in two
parts, a Data Collector and an Event Manager, each of them on a different machine.
The agent is a network device which could well be low-cost.

4.3 Management Station Applets

4.3.1 DataSubscription Applet
Proxy

To access the Data Subscription Applet, the manager browses the Network Map and
chooses the agent(s) he wants to manage. This applet communicates with the agent
through a proxy run on the Management Server. First the manager has to go through
a login servlet and authenticate himself then he is redirected to the page he wanted to
reach originally. This way, there is never a direct potentially unsafe connection to the
agent. This proxy allows managers to control what information goes to the applet. The
proxy servlet handles URL of that form:

http://proxyhost/ProxyServlet/www.myPC.com/appletpage.html

This will make the browser think that the request originally came from:
www .myPC. com/appletpage.html. The only problem with proxies is that they can be-
come bottlenecks in case too many clients use them.

The DataSubscription Applet

After choosing the Information Base he wants to browse (for example MIBs and which
MIB), the manager access the web page with the DataSuscriptionApplet. The Data
Subscription Applet has two different sides. On one side, the applet provides the sub-

4.3. MANAGEMENT STATION APPLETS 25

Agent
Managenent Station

PushSchedul es
Web Browser % Reposi tory
Dat aSUbscrti ptio PushDi spat gher Servl et
e
\ fver
Rul e Edition @

Mappi n
Aol et”

ent Notificati
Appl et

PushSchedul er

Event Manager / Data Col | ector

Event Manpger Servl et PushedDat a Col | ector Servl et

vent Logger - PushedDat aFi | t g¢r
EVent PushFor way der :

m<
e
r P

i
i
i
!
i
i
i

Managenent Server

shedDat aAnal yZzer

Figure 4.3: JAMAP Architectural Overview

scription system to configure regular management. To do so, the manager must choose
the following parameters:

e The Management Data Id of the variable he wants to subscribe to.
e The frequency at which he wants the agent to send the subscribed data.

e The representation with which he wants the data to be sent.

The data collector the data will be sent to is not chosen by the manager. A data collector
has an agent table that tells it to which agents to connect to. A subscription is then
characterized by these different parameters. and sent to the agent. On the other side,
this applet can also be considered as a tool for ad hoc management. The user can perform
the following tasks :

26 CHAPTER 4. JAMAP HIGH-LEVEL ARCHITECTURE

% bttt A ne-elEice. pRs AL AT M S0ENNCi T o] - Skaith

wielronte b th= Seene Kelay |
Fleace Brter pour ToerlTarme, Faseword to log in.

UserMName: |I'-1Hir'-'

Tasswmad: |"*H'*?

L

Figure 4.4: Secure Relay

e Browse an Information base in a convenient interface.
e Choose a table or a variable and immediately Get its value.

e Monitor some computed values such as interface utilization with a Spy

Figure 3.5 depicts the Data Subscription Applet Graphical User Interface.

4.3.2 The RuleEditor Applet

From the home page, the manager chooses the data collector he wants to edit the
rules for and loads the corresponding applet. This applet is just here to allow the
manager to either write rules from scratch or load template files for InstantaneousRule
or TemporalRule. The rules are then saved and compiled dynamically to make sure
there are no syntaxic errors. The manager can also choose to edit a rule that was
previously compiled by clicking onModify Rule The Dialog window is there to check if
the compilation encoutered problems or not. The rule is then saved after the name of
the template chosen.

4.3. MANAGEMENT STATION APPLETS

27

MIB-II Inierlace

Space Specidl

[58 Laed Mizveohies et
@ Bl RFC 213018
Lol | oty Sy |
? ? :j—%j cree Chanse Freguency oser
divetruy 10
m 5 enit Elwuss Fuimal
T ? E’EW{EM |Eerin|irn=.r]_.|mm - |
&= [inte 15 Subscribe |
Lo I p e
@ S5 g Unisubisviiba
155 ipForweearding
s TH R
i Ipn-oos oD
ipkh kiCire=re
‘g IphcorErrocg i
45 ipFoiwDececrams [¢
5 b g b Proulues; el
Glalral Wiews (e
ridaacnptinn
The cCrauityaiac InScrod InoInG T e To LR
e d 2fthe IP Feadar 2f Jatag-ams 2lnaced at
tiz anlily <ot engvara TTL v Ll = nulscpplisd
dplle hansp L=y proucol

Figure 4.5: mib-IL.Lhtml/DataSubscription Applet GUI

4.3.3 The Mapping Applet

After going through the Rule Editor Applet, the manager has saved a rule draft. No
rule is activated yet. The manager still has to go through the Mapping Applet before
he can apply or activate a rule. Since the manager may have subscribed to the same
OID but with different frequencies each time. The mapping applet allows the manager
to actually map an OID and the frequency at which the variable is sent with a rule that
will be applied to this OID, arriving at this frequency, and from this agent only. The
manager first chooses the agent, then the rule and the oid he wants to apply the rule to.
Then he loads the subscriptions for this oid on this agent and maps the rule with the
latter. This applet also allows the manager to temporarily deactivate or recativate a rule
that was previously compiled. The manager can map a rule either before he launches
the collectors and the event manager or afterwards while the agents are already sending
data to the collectors. In that case, the Dialog window would say that the rule was put
into production.

28 CHAPTER 4. JAMAP HIGH-LEVEL ARCHITECTURE

Type of Rule
rRule Java Source Dialog
|
- ource saved className=snmp/TemporaltibDataRule
|import java.otil; C:MizualCafe SEP mojectsjamapieverulefznmp!Temporalbdib D
New Rule impart com.adventnetsanmp.snmp2 *; igsaw;. \classeshjigsaw.jar,. holasseshep jar. \classeshsax.jar;. \class

parsed Ci\VizualCate SEVP rojectsijamapisenvenrulesnmprTempor
loaded C:WisualCafeSE'VProjectsijamapisenefiruleisnmpibdibD at
loaded C:WWisualCafeSEVProjectshjamapiseneiRule.class in O ms
loaded C:AProgram Files\avaSoftd REWVE 3. 15ibhtjanjawaflang/O
cheding class jamap.zervermule.snmp. TemporaltibDataRule]
loaded C:AFrogram FilesdavaSoftd REWVEZ 1libhvitjanjawallangss:
loaded C:\Program FilesidavaSoftdREWV 3. 1Mk janjavaliodSeri
loaded C:AProgram FilesiavaSoft REWV 3. 1libhtjanjawallang/C
loaded C:WisualCafeSE'VProjectsicomtadventn etienm plenmp2isn
loaded C:AFrogram FilesidavaSoftd REWVEZ bt janjawallangsL
loaded C:AProgram Files\d avaSoftdREWV 3. 10ibit.janjavallangiN
loaded C:AProgram Files\avaSoftd REWVE 3. 5ibhtjanjawallangss
wrote C:WisualCafeSEVPojects\jamapisenefirule'snmpi\Tempora
done in 72 mg]

Rule successfully compiled

import jamap.semear’;
|import jamap.semer.ulesnmp.”;

- public class TemporalMibDataRule extends jamap.senverrule snmp. MibDataRule
"

boolean aceapt;

long threshold;
String currentState;
Modify Rule int counter;

int maxnum;

publicwoid init {
acoept = true;
threshold = 2000;
maxnum=10 ;

currentState="Initial"; ule compiled
counte=0;

Save Rule 1

publicwoid apphi’SnmpWar wan |
Long n=(Long)wvarteWalued;

Instantaneaushib...

Templates TemporalMibData. .. Load

Figure 4.6: RuleEditor Applet GUI

4.3.4 EventNotification Applet

As we will see later, when events are generated,depending on their severity they are
either just logged through an EventLogger or they are logged and sent to an EventMailer
that will warn the administrator by sending him/her an email.. This applet communi-
cates with the EventManager to receive all incoming events. The EventLogger keeps the
list events in its memory and transmits them to the EventNotificationApplet. For each
incoming event, a line is added to the list of previous events and the frame blinks and
rings ten times.

4.4 Agent Servlet

The Agent servlet is called the PushDispatcher servlet. We coud have separated the
agent servlet in two as it realizes two different tasks. First, we can distinguish the
configuration part in which the agent stores its subscriptions received from the Data-
Subscription Applet in a local repository. Then, to map the rules to a precise oid, we
already resorted to the agent servlet that gives the subscriptions associated with each
oid. A subscription sheet can be accessed from the web page to check the subscrip-

4.5. MANAGEMENTSERVER SERVLETS 29

Agents |
windsor.research.att.com ;
fidelity.research.att.com i ctivated true
.? = org nmplfinstantaneoushibhDataRule
QP =3 dod ctivated :false
§ (3 internet nmpTemparalMibDataRule -
directory . i g ! Activate
® = momt ctivated false
@ 3 mib-2 - nmpfidelity_research_att_com__ 1_3_6_1_2 1_4 3 Offrequencys
@ [=ystem A Activated true
® (] interfaces i
o [t :
& (ip :
@] icmp Deactivate
P Qteo :
b topRtoAlgorithm 55
. Rtohfin| g
topRicohtax ~|:
Global View ok
rFrequencies of Subscriptions
The different frequencies are:
5
Load
rDialog

[done in 3312 ms]
Rule successfully compiled
rle compiled

Figure 4.7: Mapping Applet GUI

tions on the agent. Secondly, the agent servlet is the core of the push system and the
Management Server has to connect to the agent servlet to start any push cycle.

4.5 ManagementServer Servlets

The Management Server is separated in three parts : The PushedData Collector and
Notification Collector and the EventManager. The PushedDataCollector servlet could be
separated in two servlets itself, one servlet would realize the configuration part and the
other one would take care of the execution of the push system. The configuration part
of the PushedData Collector has already been studied within the Management station
applets paragraph so we will detail here the execution of the push system. From the
home page, the administrator launches the Data Collectors and Notification Collectors
that will connect to all the agents they have in their AgentTable. The PushedData
Collector and Notification Collector then open an HTTP Connection to their agents and
wait for pusheddata or notifications. The PushedDataCollector has a PushedDataFilter

30 CHAPTER 4. JAMAP HIGH-LEVEL ARCHITECTURE

@ Netscape b

‘Ivfile Edit Wiew Search Go Bookmarks Tasks Help

Agent Subscriptions

*+ Consuwer id: MibDatafidelity.research.att.comw.l1l.3.6.1.2.1.6.2
Chiect id: i Bae el 20160240
Chject type: MNikData

* Consumer id: MibDatafidelity.research.att.com.1.3.6.1.2.1.4.9
Chiect id: .1.3.68.1.2.1.4.59.0
Chject type: MNikData

*+ Consumwer id: MibDatafidelity.research.att.comw.1.3.6.1.2.1.4.3
Chiect id: .d1.3.6.1.2.1.4.3.0
Chject type: MNikbData

* Consumer id: MibDatafidelity.research.att.com.1.3.6.1.2.1.4.1
Chiect id: .1.3.68.1.2.1.4.1.0
Chject type: MNikData

Figure 4.8: Subscription Sheet GUI

and the Notification Collector has a NotificationFilter that will close the connection if
too many data per minute get to the PushedData Collector and Notification Collector.
As data my be subscribed to only for logging, in order to process them afterwards
or perform statistics, all data are logged in a Data Repository. Then the data are
analyzed in the PushedDataAnalyzer that has a hashtable of all activated rules. The
PushedDataAnalyzer checks if it has rules in its table that corresponds to the data it
has just received and if so, and if so, forwards the data to the rule class concerned. The
rule class generates events that are forwarded farther through a PushForwardConsumer.

Also from the web page, the manager launches the Event Manager that will connect
to its Data Collectors and open an HTTP connection to each of them. Then it waits
for pushed events. All events arrive on an EventSink that checks whether too many
events were recived or not and if yes, disconnects the Event Manager from the Data
Collector. Then events go through an event correlator that processes them and should
correlate them. For now, the Event Correlator only has 4 input queues,depending on the
severity of the event, and processes them in an order according to their severity. Still
depending on their severity, events are sent to event handlers, event mailers or simple
event loggers. The event logger will communicate the events to the manager on the
Management Station through the Event Notification Applet. Figure 3.9 shows the home

4.5. MANAGEMENTSERVER SERVLETS 31

page from which the system is launched:

SE
.| File Edit Wiew Search o Bookmarks Tasks Help
AL (T : U.E
) L®__I[% nttp://oc-claire.research.att.com:B080/index. htm ~ || search @ N|

Data Collectors

| start po-claie H start windsor H start fidelity ” start chips || start fish |I

Notification Collectors

| start pc-claire ” start windsor H start fidelity ” start chips || start fish ||

Event Manager

| Connect to all DataCollectors || Connect to all NotificationCollectors ”

Ewent Wotification Log

L

Network Map
Agents
Rule Editor

pe-claire windsor @@|

Mapping

pe-claire

Docurnent; Done

Figure 4.9: JAMAP home page

Figure 3.10 shows how flexible JAMAP is. The network system it was built for can
have one or more agents, one or nore Data Collectors, a priori one Event Manager. For
example, more than one agents can connect to one data collectors and one or more data
collectors can receive data from the same agent as well as one or more data collector can
send events to one event manager or one data collector can send events to more than
one event manager, although this is not usually the case.

32

CHAPTER 4. JAMAP HIGH-LEVEL ARCHITECTURE

Managenent Station

Rul e Edito
Appl et

Managenent St\ation

Event Manager
Ser vl et

N

Event Manager
Servl et

Data Col | ect or
Servl et

Data Col | ect or
Ser vl et

A

\

Data Col | ect or
Ser vl et

LN NN

AGENT

AGENT

AGENT

AGENT

AGENT

Figure 4.10: An example of Distributed Network Management Platform

Chapter 5

JAMAP Detailed Design

5.1 Communication components

As we saw before, JAMAP follows the publish/subscribe paradigm. Let us see how
precisely we go through these phases using applets and servlets.

1. The publication phase corresponds to browsing on the agents’ web pages and choos-
ing an Information Base and download the corresponding SubscriptionApplet.

2. The Subscription phase coresponds to sending the subscription from the applet
to the agent. In JAMAP, this is done by sending a POST request to the agent’s
PushDispatcherServlet. The body of the message contains a serialized object of the
class Subscription, which identifies the data to push and to which data collector it
should be sent.

3. The distribution phase corresponds the agent’s sending data to the Data Collec-
tor through a fixed push communication path, implemented with HT'TP1.0. The
PushedData Collector actually sends a GET request to the PushDispatcherServlet
and established an infinite connection to it. The response will be infinite, made of
MIME parts containing Units. These units are either serialized or have an XML
Schema representation.

The administrator can also unsubscribe to stop the data transfer from the agent. This
is also done with an HTTP POST request sent to the agent’s PushDispatcherServlet.
JAMAP uses mostly dispatchers to create and send units and collectors on the other
side to receive these units and later distribute them to the consumers concerned.

34 CHAPTER 5. JAMAP DETAILED DESIGN

Payl oad

writeQhject(out: CbjectCutputStream

readCbj ect (i n: Cbj ect | nput Stream

Uni t

sourceTi neSt anp: Date
destinationTi meStanp: Date
sourceld: String

obj ect: Object

Figure 5.1: The Unit class

5.1.1 Units

Units are the base classes of communication. As shown in Figure 4.1, Unit is a spe-
cialization of the abstract class Payload which is the superclass of any class used in
communication and is serializable. Units are characterized by two dates, the time they
were created and the time they were received on the other side. This is useful in case
the network suffers from congestion. Comparing the sourceTimeStamp and the desti-
nationTimeStamp will tell if the network is congested or not and if yes, this will give a
first idea of the hops concerned by the congestion. To identify one also needs to know
where it comes from, which is given by the sourceld attribute of the class Unit. What
this unit carries is the opaque object of this unit. It can either be an instance of the
class PushedData or an instance of the class Event, or a simple String.

PushedData

A PushedData is sent by the PushScheduler and corresponds to a subscription. It is
therefore characterized by the subscription and the value of the variable the manager

5.1. COMMUNICATION COMPONENTS

35

subscribed to. The value is of type Object, in case the variable represents a table.

5.1.2 Subscription

The abstract Subscription class contains all the information about the data pushed.

e objectType

This describes the kind of data the manager subscribed to. For instance,MibData

would refer to an SNMP variable or Notification would refer to a SNMP Trap.

e mgmtDatald

This is a unique identifier of the object that the manager subscribed to, it corre-
sponds to the OID of the variable. For instance, if the objectType was MibData,

this would correspond to an SNMP OID.

e consumerld

The consumerld identifies the final consumer the data must be sent to. For ex-
ample, for a MIB variable, this will identify the rule that will be applied to the
value of this variable. The consumerld for a MIB variable will have the form:
agent.research.att.com___ oid frequency. This way, the final consumer, ie the rule

corresponding to this data is uniquely identified by its Id.

e representation

The agent needs to know which representation(up to now, XML Schema or Seri-

alized Java)it is supposed to use when sending the data.

The DataSubscription class inherits from the Subscription class and stands for regular
management push and needs therefore a fourth field to determine the frequency at which
the variable with the mgmtDatald given needs to be sent to the Data Collector. The
NotificationSubscription class, up to now, simply inherits from the Subscription class.

5.1.3 Event

An Event is sent by the DataCollector to the Event Manager after applying a rule to

a PushedData. An event is characterized by:

e its EventType: what kind of event was generated. For now, only two types were

implemented, OVERFLOW and Notification.

e the name of the Rule that generated this event.

36 CHAPTER 5. JAMAP DETAILED DESIGN

e its Severity whether this event is just Informative, Warning, Critical or Fatal.

5.2 The Management Station

The Management Station loads all the applets which will allow the manager to configure
JAMAP and actually manage the whole network from a simple PC.

5.2.1 DataSubscription applet
Operations

This is the first step in order to configure the network management platform. This
applet uses AdventNet classes for a sophisticated GUI. First it enables the user to get the
instant value of any variable and display it in a monitor according to its type. This task
is performed using HT'TP GET requests and sending them to the agent in a standard
pull model. Secondly, it provides the subscription and unsubscription system for any
variable. Subscribing to a variable or unsubscribing is performed using HTTP POST
requests sent to the agent. The following figure shows which classes are involved in the
Subscription phase. For all applets that we will describe later, the model is the same.
Mainly, the applet has one separate GUI, and is a realization of a Listener interface, here
DataSubscriptionListener, that will listen to events.

Classes

The classes used in the DataSubscriptionApplet are depicted in Figure 4.2.

The Get System

From the DataSubscriptionApplet, the administrator can also choose to simply retrieve
the value of the MIB variable he wants.

Figure 4.3 shows the Interaction Diagram used when simply getting the value of a vari-
able, without subscribing. The SnmpBase class then uses AdventNet classes to get the
value of the given variable. When the administrator actually wants to subscribe, Fig-
ure 4.4 shows the Interaction Diagram used when subscribing to a MIB variable. More
classes are involved in the Subscribe system than in the simple Get system.

5.2. THE MANAGEMENT STATION

37
<<interface>>
Dat aSubscri pti onLi st ener
m bNodeSel ect ed(i bNode: M bNode)
get G icked()
subscri bed i cked()
unsubscri bed i cked()
1
Dat aSubscri pti onAppl et 1
1 1
1 1 1
Dat aSubscri pti onPanel PushNet wor ker Net wor ker
g[alrillglsUrl:String servletsUrl: String
get Sel ect edM bNode(): M bNode s:_Socket

get Sel ect edRepresentation(): String
get Frequency():int
roundFr equency()

subscri befsubscri ption:

Subscri ption
collectorld: String)

unsubscri be(subscri ber|d: Subscri berld)

obj ect
oj ect

get (objectld: String,

Type: String):

Figure 5.2: The classes used by the DataSubscription applet

Dat aSubscri pti onAppl et|

I
I
—

get dicked() new()

get (oi d, obj ect Type)

(=

1
I
——

1 Servl et

SnnpBase

I

1

1

I
—

doGet ()

new()

1

1

I
—

get (obj ect1d)

Figure 5.3: Interaction Diagram for the Get system

5.2.2 RuleEditorApplet

After subscribing to some MIB variables, the administrator has to tell the system
whats he/she wants to do with the values of these variables. This is considered the

38 CHAPTER 5. JAMAP DETAILED DESIGN

| Dat aSubscri pti onAppl et| | PushNet wor ker | | PushDi spat cher | | Subscri ptionTabl e |
T

| | T

I I 1 1
- - ! !

I I
1 -
subscri bed i cked|()
—_—

new()

subscri be(Dat aSubscri ption

doPost (command=subscri be)

put (col | ectorld, subscription

Subscri ption

Figure 5.4: Interaction Diagram for the Subscribe system

second step in configuring the network management platform. The manager write rules
and saves them on the Data Collector. Here this task is performed using HTTP POST
from the Management Station to the Data Collector. Figure 4.5 shows the Interaction
diagram used when editing and saving a rule.

5.2.3 Operations

The manager can choose to write a new rule or modify an existing one. If he chooses
to modify an existing rule, then the list of all the rules saved on the Data Collector
appears on the screen and he can choose which one he wants to edit.

Saving a rule

1. The GUI notifies the applet that implements RuleEditorListener of a click on the
SaveRule button.

2. The main controller retrieves the source string of the rule fron the Source area.
3. It tells the networker to post the source.

4. Tt tells the GUI to display the response from the Data Collector in the Dialog area.

Classes

The design of this simple applet is depicted in Figure 4.5.

5.2. THE MANAGEMENT STATION 39

RuleEditorListener

SaveRuleClicked()
NewRuleClicked()
ModifyRuleclicked()

A

RuleEditorApplet

RuleEditorPanel Networker

post(url: String,message: String): String

get SelectedMibnode()
getRuleSource()
getAgentSel ected()
setDialog(String string)

Figure 5.5: Class Diagram for the RuleEditor system

RuleEditorApplet: Main controller class.

RuleEditorPanel: Graphical User Interface

RuleEditorListener: Interface for receiving events from a RuleEditorPanel

Networker: used for transfer information to the Data Collector.

With the RuleEditorApplet, the manager saves the rule source, which is compiled and
the rule is given a name, and saved on the DataCollector. The rule is also added to the
RuleTable, a hashtable where the flag activated is set to false.

5.2.4 MappingApplet

This is the last step in rule configuration. The manager associates a rule with an
agent, an oid and a frequency. Here this task is performed using HTTP POST from the

40 CHAPTER 5. JAMAP DETAILED DESIGN

| Rul eEdi t or Appl et | | Net wor ker | | PushedDat aCol | ect or | | Rul ed assHandl er| | Rul eTabl e |
T T T

I I

I I 1 1 1
- - | | |
—— —— —

saved i cked()
—_—]

new()

post (command=
saver ul eandnot appl'y
& cl assNane, sour ce)

doPost (command=
saver ul eandnot appl y
rul eSour ce)

saveSour ce(source)

conpi | e(cl assNane)

put (cl assNare,
fal se)

Figure 5.6: Interaction Diagram for the RuleEditor system

Management Station to the Data Collector after loading the frequencies corresponding
to the given oid from the agent.
5.2.5 Operations

The manager must go through a few operations before activating a rule.

1. First the manager must choose the agent. Then the list of the rules created for
this agent appears.

2. He must choose the oid of the variable he wants to apply the rule to. This is done
by browsing the MibTree provided by AdventNet.

3. Then he loads the frequencies of the different subscriptions registered for this agent
and for this oid. Briefly, this task is performed by sending a Get to the Subscrip-
tionSheet Servlet that logs all the subscriptions realized.

4. He chooses a rule among those on the list

5. He clicks on the Activate button.

After that, the sequence of operations performed is similar to those performed after
clicking on the SaveRule button on the Rule Editor Applet.

5.2. THE MANAGEMENT STATION 41

Classes

The design of the Mapping Applet is similar to the one for Rule Edition.

e MappingApplet: Main Controller class.
e MappingPanel: Graphical User Interface
e MappingListener: Interface for receiving events from a Mapping Panel

e PushNetworker: used for transfer information to the Data Collector.

5.2.6 EventNotificationApplet
Operations

First, the manager clicks on the Connect button and then waits for events.

1. The UnitCollector gets the next available unit from the PushNetworker.
2. It passes it to the main controller, feeding the applet considered a Consumer

3. the applet tells the GUI to display the event, by adding a line to the list of previ-
ously received events.

4. The manager can eventually delete certain lines from the list of events by selecting
a line of the event list and clicking on the Remove button.

A blinking light and a sound system should notify the user of occurence of events.

Classes

The design of this applet is depicted in Figure 4.8.

EventNotification Applet

EventNotifierPanel

EventNotifierListener

PushNetworker

42 CHAPTER 5. JAMAP DETAILED DESIGN

Consumer

feed(unit:Unit)

EventNotificationAppl et

01 1 01

1 ‘ 1

EventNotifierPanel UnitCollector
addEventLine(line:String) setld(id:String)

connect()

disconnect()

dispatchNextUnit()

1
PushNetworker
servletUrl : Url

getNextPart() : MIMEPart

connect()
disconnect()

Figure 5.7: Class Diagram for the EventNotification applet

5.3 The Agent

5.3.1 Get and GetTable Servlets

This servlet is used for ad hoc management. It uses the usual pull system. The servlet
retrieves data given their OID and ObjectType as the URL query parameters.

e ManagementBase This is the interface to any class handling management informa-
tion base.

5.3. THE AGENT 43

e SnmpBase Implementing ManagementBase, this is an object implementing the
underlying SNMP protocol and using AdventNet classes to retrieve the requested
data.

Operations

The servlet only has a doGet method to answer a GET request from the Management
Station. To reply to the request, the servlet retrieves the value of the variable from the
ManagementBase. Up to now, JAMAP supports SNMP only so the objectType can only
be MibData. The reply consists in a Serialized Java object giving the value of the oid
the manager asked for. If the Get Servlet is called, the object in the response will be
a SnmpVar, representing a single MIB variable. If the GetTable Servlet is called, the
object in the response will be a table meaing that the oid given referred to an SnmpTable.

5.3.2 PushDispatcherServlet

This servlet provides the push system on the agent and gives some intelligence to the
usually dumb SNMP agent.

Classes
The classes of the PushDispatcher are depicted in Figure.

e SubscriptionTable This is a hashtable containing subtables as values and collec-
torlds as keys.

e PushScheduler This is the center of the push system, it dialogs with the Manage-
mentBase to retrieve values and pushes units to the outputstreams accordingly
with its schedules.

e PushedDataFormatter This is the class that decides which outputstream to use:
Multipart or XML, after reading the representation field in the subscription given.

e MultiPartOutputStream This class handles a MIMEMultipart stream.Objects writ-
ten to it are serialized and sent in one MIME Part.

e XMLOutputStream This class handles a MIMEMultipart stream too. Objects
written to it are represented using XML Schema.

Operations

e Adding a subscription to the SubscriptionTable The ManagementStation, via the
Management Server, sends an HTTP POST on the servlet with subscribe as URL

44

CHAPTER 5. JAMAP DETAILED DESIGN

query string.The servlet then invokes the Put method on the SubscriptionTable
which will add the subscription to the subtable identified by the collectorld given.

Removing a subscription from the SubscriptionTable The ManagementStation, via
the Management Server, sends an HTTP POST on the servlet with unsubscribe
as URL query string.The servlet then invokes the remove method on the Subscrip-
tionTable which will remove the subscription from the subtable identified by the
collectorld given.

PushScheduling All the interactions between components of the scheduling system
are depicted in Figure.

5.4 The DataCollector

5.4.1 The PushedDataCollectorServlet

Classes

The classes of the PushedDataCollector are depicted in Figure.We can distinguish two
different phases in this servlet. One is used for configuration sake and the other one is
used in any push cycle. This is why in the future, it would be better to separate these
two different parts in two different servlets. For configuration, we use:

CollectorTable A hashtable of all the unit collectors in the servlet,indexed o, their
collectorld.

RuleTable This is a hashtable where all the rules are registered, whether they are
active or not.

RuleClassHandler This is the static class reponsible for saving and compiling the
rules.

RuleThis is the generic rule. During a push cycle we use:

UnitCollector The UnitCollector reads form the stream and determines if the data
are encoded in XML or if they are in Serialized Java. Then, the unit collector
forwards the interesting MIME Part of the MIME Multipart Stream to an XML
Handler or a Serialized Java Handler.

XMLHandler This class handles a MIME Part where objects are read using a XML
Parser.

SerializedJava Handler This class handles a MIME Part where objects are deseri-
alized using readObject methods.

5.5. THE NOTIFICATION COLLECTOR 45

e PushedDataFilter It controls the number of units received per minute. If the
number of units received exceeds a certain threshold, the Unit Collector closes the
connection to the agent.

e PushedDataAnalyzer It has a set of rules identified by the key agentId/type/oid/frequency
and decides which rule to apply to one unit received depending on the agentld, the
type, oid and frequency corresponding to this unit..

e PushForwardConsumer This consumer waits for units and forwards them to a
SerializedJava OutputStream. Up to now events are written in Serialized Java
only. We need to add an applet for event subscription where the administrator
chooses the format which will be used to forward events.

5.4.2 Operations

1. RuleConfiguration Creating a rule from a received rule source. Activating the rule
and putting the rule into production through associating it with a PushedDataAn-
alyzer. The Mapping applet allows the administrator to deactivate or activate the
rules he chooses.

2. Push data and generate units encapsulating events.

For one push cycle, the interaction diagram is given in Figure 4.6

5.5 The Notification Collector

The big picture is the same as with the Data Collector, the only difference being that
we have not implemented any rules yet. We can distinguish two different phases in this
servlet. One is used for configuration sake and the other one is used in any push cycle.
This is why in the future, it would be better to separate these two different parts in two
different servlets. For configuration, we use:

e CollectorTable A hashtable of all the unit collectors in the servlet,indexed on their
collectorld. During a push cycle we use:

e SerializedJava Handler This class handles a MIME Multipart stream where objects
are deserialized using readObject methods.

e NotificationFilter It controls the number of units received per minute. If the num-
ber of units received exceeds a certain threshold, the Unit Collector closes the
connection to the agent.

46 CHAPTER 5. JAMAP DETAILED DESIGN

‘ Data Collector ‘ ‘ PushNetworker ‘ ‘ UnitCollector ‘ ‘ PushedDataFilter ‘ ‘UnitDistributor ‘ ‘ PushedDataAnalyzer ‘
new()
new()
new()
new()
new()
setPushNetworker(Networker)
register(PushedDataAnalyzer,consumer 1d)
setNextConsumer
(PushedDataFilter)
setNextCansumer(UnitDistributor)
getNextPart()
nextConsumer
- nextConsumer :
.feed(unlt) f%d(unlt) f%d(uﬂlt)

For simplicity sake,

we did not show on

this figure the step when

the unit collector reads the

contenttype of the MIME Part

and chooses to send the part to

the Serialized Java Handler or XML
Handler and the separates the part into units

Figure 5.8: Interaction Diagram for one Push cycle

o PushForwardConsumer This consumer waits for units and forwards them to a Seri-
alizedJava OutputStream . Actually, up to now, events are described in Serialized

Java only.

e SerializedJavaOutputStream describes the events in Serialized Java and sends them
to the next consumer.

5.5.1 Operations

1. NotificationConfiguration The Notification Collector is used during the configura-
tion phase when the administrator chooses what type of notifications he accepts
to receive and which format should be used.

5.6.

THE EVENTMANAGER 47

2.

5.6

5.6.1

Push data and generate units encapsulating notifications.

The EventManager

Classes

EventSink This is where all events arrive. It serves the same purpose as the Pushed-
DataFilter for events this time. If too many events are received, something is wrong
in the network and it closes its connection to the PushedData Collector and Noti-
fication Collector.

EventCorrelator This is the core of the EventManager. By correlating events it
allows to drop some events and therefore it allows to reduce redundancy. Its task
is to relate events one to another. By now, no rule was implemented on the event
correlator since correlating events is a hard task and we had rather take some free
code and adapt it to JAMAP than write en event Correlator from scratch.

EventQueue In our configuration, we supposed that there were more than one
Data Collectors and more than one notification collectors. So we have to manage
the case when two Data Collectors or Notification Collectors send events at the
same time. When events are received from collectors, they are queued in one of
4 different EventQueues depending on their severity, which can be either fatal,
warning, critical or simply informative.

SeverityThreads When one event is received the thread with highest priority wakes
up, looks into its EventQueue and processes the events in its queue. If its queue
is empty, then the thread with the second highest priority wakes up and does the
same. This goes on until the thread with the lowest priority has processed its
events.

EventLogger Processing events means sending them to the next consumer that was
registered during the configuration phase. Whatever the severity of an event is,
this event is logged giving the agentld, the collectorld, the rule that generated the
event and the severity of the event. This way the administrator knows from looking
at the logs what generated the event.

EventMailer If the severity of the event received is either fatal or critical, the event
is then forwarded to an EventMailer that will send a mail the the administrator
in charge of the system or the network. In this mail, we also find the agentld, the
collectorld, the rule that generated the event, the type of the event and its severity.

PushForwardConsumer In case the administrator loaded the EventNotification-
Applet, this applet is then considered a consumer of events and all events are
formatted from the EventLogger and sent to the Management Station through a
PushForwardConsumer.

48 CHAPTER 5. JAMAP DETAILED DESIGN

5.6.2 Operations

The Event Manager is used to process events and forwards them to the right event
consumers depending on the severity. It can also forward events to the Management
Station applet if the administrator is running the EventNotification applet.

Chapter 6

Conclusion

In this last chapter, we summarize what has been implemented and see what future
work remains to be done.

6.1 Summary and Contributions

Finally, JAMARP is a research prototype and not a full-fledged management platform.
We could have developed nicer GUIs but we decided to concentrate on the Communi-
cation Model and the distribution aspects. JAMAP is now available on the web at :
http://www.research.att.com/ jpmf and fully implements the WIMA architecture de-
scribed by J.P. Martin-Flatin in his Ph.D. thesis.

JAMAP is platform independent and has been tested under Windows 2000, Solaris
5.8, Irix 6.5 and Red Hat Linux 6.2. We used JDK1.2 and JDK1.3 as well as HTTP /1.0
and HTTP/1.1. My main contributions to this project were :

e Distribution of the platform to support multiple agents, data collectors and noti-
fication collectors

e Implementation of a new design for the event manager and notification handling
o JAMAP now supports XML as a means for representing management data
e Encapsulate numerous data in one MIME Part

e Implementation of a new design for the rule edition and the mapping between rules
and incoming data/events

e Reduction of the network overhead and the CPU/ memory overhead of the Pushed-
DataAnalywers running on the data collectors.

6.2. FUTURE WORK 51

6.2 Future Work

Many enhancements could be made to JAMAP. One of them could be to implement
a real-life event correlator with rules and do some performance testing. We chose not to
implement a complete event correlator since event correlation is a complicated task we
did not have time to tackle during this internship. We also need to implement the new
design of the PushScheduler in order to send data more efficiently. The HTTP Server
we used buffered the data before sending them and we have contacted the W3C team
about this problem but have got not response yet.

Bibliography

1]

2]

3]

[4]

R. Anderson, M. Birbeck et al. Professional XML, Wrox Press,
2000.

G.Booch, J. Rumbaugh and I. Jacobson. The Unified Modeling
Language User Guide, Addison-Wesley, 1999.

J.P. Martin-Flatin. Web-Based Management of IP Networks and
Systems, PhD thesis, EPFL, Switzerland, October 2000.

J.P. Martin-Flatin. Push vs.Pull in Web-Based Network Man-
agement. In M.Sloman, S.Mazumdar and E.Lupu (Eds), Proc
6th IIFIP/IEEE International Symposium on Integrated Network
Management (IM’ 99), Boston, MA, USA, May 1999.

J.P. Martin-Flatin. La gestion des réseaux IP basée sur les tech-
nologies Web et le modéle push. In O.Cherkaoui (Ed), Proc. 3e
Colloque Francophone sur la Gestion de Réseaux et de Services
(GRES’ 99), Montreal, QC, Canada, June 1999.

J.P Martin-Flatin, L. Bovet and J.P. Hubaux. JAMAP: a Web-
Based Management Platform for IP networks. In R.Stadler and
B.Stiller (Eds), Active Technologies for Network and Service
Management, Proc 10th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management (DSOM’99),
Zurich, Switzerland.

L. Bovet. The Push Model in a Java-Based Network Management
Application, M. S. thesis, Computer Science Dept, EPFL, March
1999.

