]> Euler's Totient Function for n = 53001..54000

Euler's Totient Function for n = 53001..54000


Note: This page uses MathML. To view it properly, you need a MathML-enabled browser. You may also have to install some fonts.


Euler's totient function (also known as the "phi function") counts the number of natural integers less than n that are coprime to n. It is very useful in number theory, e.g. to compute the number of primitive roots modulo a prime n. For more information, see:

The values presented below were computed in 2015 using a Python program.

n 53001 53002 53003 53004 53005 53006 53007 53008 53009 53010
φ(n) 32400 26500 53002 15120 42400 24928 35336 26496 46800 12960
n 53011 53012 53013 53014 53015 53016 53017 53018 53019 53020
φ(n) 45432 25536 34400 24456 40480 17296 53016 22680 34272 19200
n 53021 53022 53023 53024 53025 53026 53027 53028 53029 53030
φ(n) 51552 17672 49888 26496 24000 26512 48936 17640 50220 21208
n 53031 53032 53033 53034 53035 53036 53037 53038 53039 53040
φ(n) 32120 22704 52560 17676 42424 26516 34440 25344 45456 12288
n 53041 53042 53043 53044 53045 53046 53047 53048 53049 53050
φ(n) 48720 24100 35360 26048 42024 15120 53046 25056 35364 21200
n 53051 53052 53053 53054 53055 53056 53057 53058 53059 53060
φ(n) 53050 17680 37440 25840 28080 26496 49920 17136 52416 18144
n 53061 53062 53063 53064 53065 53066 53067 53068 53069 53070
φ(n) 33792 25872 51888 15840 42448 24336 28728 26532 53068 13440
n 53071 53072 53073 53074 53075 53076 53077 53078 53079 53080
φ(n) 52272 25440 35376 21312 38400 17688 53076 26538 32640 21216
n 53081 53082 53083 53084 53085 53086 53087 53088 53089 53090
φ(n) 45492 17676 52488 25344 28304 22680 53086 14976 53088 21232
n 53091 53092 53093 53094 53095 53096 53097 53098 53099 53100
φ(n) 33216 24480 53092 17696 34560 26544 32160 26220 51240 13920
n 53101 53102 53103 53104 53105 53106 53107 53108 53109 53110
φ(n) 53100 22752 34200 26544 36288 17264 50776 22400 30240 20608
n 53111 53112 53113 53114 53115 53116 53117 53118 53119 53120
φ(n) 52632 17696 53112 26556 28320 22680 53116 16272 48180 20992
n 53121 53122 53123 53124 53125 53126 53127 53128 53129 53130
φ(n) 35412 26560 45528 16704 40000 26200 35412 25536 53128 10560
n 53131 53132 53133 53134 53135 53136 53137 53138 53139 53140
φ(n) 47520 25776 34848 25680 42504 17280 45540 26406 35424 21248
n 53141 53142 53143 53144 53145 53146 53147 53148 53149 53150
φ(n) 48300 16640 50328 20736 28320 26572 53146 17136 53148 21240
n 53151 53152 53153 53154 53155 53156 53157 53158 53159 53160
φ(n) 30360 24000 50820 17712 42520 26112 30912 22776 48256 14144
n 53161 53162 53163 53164 53165 53166 53167 53168 53169 53170
φ(n) 53160 25164 32040 26580 35280 17720 52416 26576 34416 19584
n 53171 53172 53173 53174 53175 53176 53177 53178 53179 53180
φ(n) 53170 15120 53172 24160 28320 23936 51840 17724 44520 21264
n 53181 53182 53183 53184 53185 53186 53187 53188 53189 53190
φ(n) 33480 26590 49080 17664 38640 21840 35456 26592 53188 14112
n 53191 53192 53193 53194 53195 53196 53197 53198 53199 53200
φ(n) 51912 25920 28416 26596 42552 14400 53196 26136 33792 17280
n 53201 53202 53203 53204 53205 53206 53207 53208 53209 53210
φ(n) 53200 17732 52480 25944 28368 25848 41400 17712 49104 19968
n 53211 53212 53213 53214 53215 53216 53217 53218 53219 53220
φ(n) 35472 26000 52668 15120 40992 26592 34992 23200 50400 14176
n 53221 53222 53223 53224 53225 53226 53227 53228 53229 53230
φ(n) 45612 23232 34944 26608 42560 17736 48000 22800 32240 21288
n 53231 53232 53233 53234 53235 53236 53237 53238 53239 53240
φ(n) 53230 17728 53232 25956 22464 26616 52716 16776 53238 19360
n 53241 53242 53243 53244 53245 53246 53247 53248 53249 53250
φ(n) 35492 22812 51768 16128 40656 26208 35496 24576 45636 14000
n 53251 53252 53253 53254 53255 53256 53257 53258 53259 53260
φ(n) 46920 26624 34560 26626 42600 15168 50436 25740 34560 21296
n 53261 53262 53263 53264 53265 53266 53267 53268 53269 53270
φ(n) 46080 16080 45612 26624 27456 26632 53266 16896 53268 18240
n 53271 53272 53273 53274 53275 53276 53277 53278 53279 53280
φ(n) 35496 26632 46480 16368 42600 25200 29232 25056 53278 13824
n 53281 53282 53283 53284 53285 53286 53287 53288 53289 53290
φ(n) 53280 26640 35520 20640 42624 17384 49176 26640 34200 21024
n 53291 53292 53293 53294 53295 53296 53297 53298 53299 53300
φ(n) 43560 17760 52768 26646 23040 26640 52836 14904 53298 19200
n 53301 53302 53303 53304 53305 53306 53307 53308 53309 53310
φ(n) 34992 25704 52800 17760 36528 24220 35532 26652 53308 14208
n 53311 53312 53313 53314 53315 53316 53317 53318 53319 53320
φ(n) 52624 21504 32784 23760 42648 17760 46800 26104 30456 20160
n 53321 53322 53323 53324 53325 53326 53327 53328 53329 53330
φ(n) 52500 17772 53322 26660 28080 21024 53326 16000 50176 21328
n 53331 53332 53333 53334 53335 53336 53337 53338 53339 53340
φ(n) 34272 26136 43200 17772 42664 25984 33968 26668 44640 12096
n 53341 53342 53343 53344 53345 53346 53347 53348 53349 53350
φ(n) 52000 26344 35556 26656 41584 16704 45720 26672 35564 19200
n 53351 53352 53353 53354 53355 53356 53357 53358 53359 53360
φ(n) 51600 15552 53352 22032 28448 26676 52896 17784 53358 19712
n 53361 53362 53363 53364 53365 53366 53367 53368 53369 53370
φ(n) 27720 26680 48384 17784 39360 26682 35576 22848 52644 14208
n 53371 53372 53373 53374 53375 53376 53377 53378 53379 53380
φ(n) 49608 24240 35580 26686 36000 17664 53376 24624 35532 19968
n 53381 53382 53383 53384 53385 53386 53387 53388 53389 53390
φ(n) 53380 14400 46200 26688 28464 26692 52920 17784 44016 20160
n 53391 53392 53393 53394 53395 53396 53397 53398 53399 53400
φ(n) 31968 25760 52788 16160 41760 22872 33408 26698 52536 14080
n 53401 53402 53403 53404 53405 53406 53407 53408 53409 53410
φ(n) 53400 26700 30504 24336 38800 16632 53406 26688 33696 18144
n 53411 53412 53413 53414 53415 53416 53417 53418 53419 53420
φ(n) 53410 17800 51660 25120 28464 24240 42192 17136 53418 21360
n 53421 53422 53423 53424 53425 53426 53427 53428 53429 53430
φ(n) 35612 26710 52080 14976 42720 26712 32360 24624 50600 13056
n 53431 53432 53433 53434 53435 53436 53437 53438 53439 53440
φ(n) 43008 26712 35604 26716 42744 17280 53436 20760 34776 21248
n 53441 53442 53443 53444 53445 53446 53447 53448 53449 53450
φ(n) 53440 17808 49320 25800 24384 26722 48384 16640 47040 21360
n 53451 53452 53453 53454 53455 53456 53457 53458 53459 53460
φ(n) 35628 21648 53452 17400 42760 24576 35088 26728 45780 12960
n 53461 53462 53463 53464 53465 53466 53467 53468 53469 53470
φ(n) 52992 26730 35000 25920 39168 14256 52920 26732 32832 21384
n 53471 53472 53473 53474 53475 53476 53477 53478 53479 53480
φ(n) 48600 17792 45828 26736 26400 25760 52416 17820 53478 18240
n 53481 53482 53483 53484 53485 53486 53487 53488 53489 53490
φ(n) 35652 21120 52728 17824 40464 26128 30456 26736 52800 14256
n 53491 53492 53493 53494 53495 53496 53497 53498 53499 53500
φ(n) 52984 26040 32400 22920 39456 17808 52560 25564 33536 21200
n 53501 53502 53503 53504 53505 53506 53507 53508 53509 53510
φ(n) 45852 17280 53502 23040 26880 25860 53506 14112 52704 21400
n 53511 53512 53513 53514 53515 53516 53517 53518 53519 53520
φ(n) 35672 26752 52548 17820 33120 25152 35676 26758 52920 14208
n 53521 53522 53523 53524 53525 53526 53527 53528 53529 53530
φ(n) 46992 22932 33696 26760 42800 16200 53526 26760 30576 20800
n 53531 53532 53533 53534 53535 53536 53537 53538 53539 53540
φ(n) 53064 17832 48576 23520 27552 22848 46800 17844 52056 21408
n 53541 53542 53543 53544 53545 53546 53547 53548 53549 53550
φ(n) 35640 25344 45888 16896 42832 26080 32928 24320 53548 11520
n 53551 53552 53553 53554 53555 53556 53557 53558 53559 53560
φ(n) 53550 26768 35700 26776 42840 17848 45864 26280 32400 19584
n 53561 53562 53563 53564 53565 53566 53567 53568 53569 53570
φ(n) 50724 17472 51688 22944 28560 26782 47872 17280 53568 19440
n 53571 53572 53573 53574 53575 53576 53577 53578 53579 53580
φ(n) 30600 26216 49296 17856 42840 25920 35712 22176 53040 13248
n 53581 53582 53583 53584 53585 53586 53587 53588 53589 53590
φ(n) 48700 26352 34944 25088 36720 16416 52240 26792 35724 20416
n 53591 53592 53593 53594 53595 53596 53597 53598 53599 53600
φ(n) 53590 13440 53592 26460 28512 26796 53596 17864 38880 21120
n 53601 53602 53603 53604 53605 53606 53607 53608 53609 53610
φ(n) 33600 26800 48620 17856 42000 22932 35192 26800 53608 14288
n 53611 53612 53613 53614 53615 53616 53617 53618 53619 53620
φ(n) 53610 24720 28512 24360 42888 17856 53616 23616 35040 18336
n 53621 53622 53623 53624 53625 53626 53627 53628 53629 53630
φ(n) 50568 17820 53622 26808 24000 26812 44712 17280 53628 20640
n 53631 53632 53633 53634 53635 53636 53637 53638 53639 53640
φ(n) 34800 26752 53632 15312 40320 22880 33840 24744 53638 14208
n 53641 53642 53643 53644 53645 53646 53647 53648 53649 53650
φ(n) 44928 26820 35760 26820 42912 17880 48760 22944 35748 20160
n 53651 53652 53653 53654 53655 53656 53657 53658 53659 53660
φ(n) 49512 16768 53652 26496 24192 25344 53656 16200 51304 21456
n 53661 53662 53663 53664 53665 53666 53667 53668 53669 53670
φ(n) 34560 22992 53040 16128 42928 26832 34848 26832 38400 14304
n 53671 53672 53673 53674 53675 53676 53677 53678 53679 53680
φ(n) 53200 26832 35780 26220 40320 15120 49536 26838 34496 19200
n 53681 53682 53683 53684 53685 53686 53687 53688 53689 53690
φ(n) 53680 17072 46008 26840 28608 25248 52200 17888 52624 16704
n 53691 53692 53693 53694 53695 53696 53697 53698 53699 53700
φ(n) 32520 25920 53692 16848 42952 26816 30672 26848 53698 14240
n 53701 53702 53703 53704 53705 53706 53707 53708 53709 53710
φ(n) 52972 24400 31104 22848 41008 17900 52416 25872 35804 20800
n 53711 53712 53713 53714 53715 53716 53717 53718 53719 53720
φ(n) 46032 17856 46080 26500 28640 24768 53716 15336 53718 19968
n 53721 53722 53723 53724 53725 53726 53727 53728 53729 53730
φ(n) 34776 26860 51960 15840 36720 26862 35816 25344 49584 14256
n 53731 53732 53733 53734 53735 53736 53737 53738 53739 53740
φ(n) 53730 21600 35820 26400 39040 17904 48384 26496 30672 21488
n 53741 53742 53743 53744 53745 53746 53747 53748 53749 53750
φ(n) 52800 16224 53280 26864 28656 20880 52920 17904 52780 21000
n 53751 53752 53753 53754 53755 53756 53757 53758 53759 53760
φ(n) 31680 26872 46032 16320 39648 26400 32400 26878 53758 12288
n 53761 53762 53763 53764 53765 53766 53767 53768 53769 53770
φ(n) 52272 26880 35840 26880 43008 17136 46080 22080 35844 20304
n 53771 53772 53773 53774 53775 53776 53777 53778 53779 53780
φ(n) 50592 17920 53772 21912 28560 26880 53776 17924 48880 21504
n 53781 53782 53783 53784 53785 53786 53787 53788 53789 53790
φ(n) 28224 26890 53782 17712 41520 26892 35856 21504 50616 12960
n 53791 53792 53793 53794 53795 53796 53797 53798 53799 53800
φ(n) 53790 26240 34776 24816 34944 17928 51436 26136 35256 21440
n 53801 53802 53803 53804 53805 53806 53807 53808 53809 53810
φ(n) 47520 15120 53320 26900 26880 26902 49656 16704 46116 21520
n 53811 53812 53813 53814 53815 53816 53817 53818 53819 53820
φ(n) 35856 24440 53812 17936 41952 22320 35876 26460 53818 12672
n 53821 53822 53823 53824 53825 53826 53827 53828 53829 53830
φ(n) 53212 25312 27840 25984 43040 17940 50976 26912 35880 18432
n 53831 53832 53833 53834 53835 53836 53837 53838 53839 53840
φ(n) 53830 17936 48000 24460 27648 26208 46140 17928 50656 21504
n 53841 53842 53843 53844 53845 53846 53847 53848 53849 53850
φ(n) 35360 26920 51480 15360 38720 23328 34560 26208 53848 14320
n 53851 53852 53853 53854 53855 53856 53857 53858 53859 53860
φ(n) 45864 26924 34608 26926 43080 15360 53856 23076 33120 21536
n 53861 53862 53863 53864 53865 53866 53867 53868 53869 53870
φ(n) 53860 17480 52920 26928 23328 25740 47560 17688 53244 21544
n 53871 53872 53873 53874 53875 53876 53877 53878 53879 53880
φ(n) 35912 20736 50688 17280 43000 26936 35916 23400 44856 14336
n 53881 53882 53883 53884 53885 53886 53887 53888 53889 53890
φ(n) 53880 25984 35916 25488 39744 15384 53886 26880 30800 20224
n 53891 53892 53893 53894 53895 53896 53897 53898 53899 53900
φ(n) 53890 17928 46188 26946 28736 26944 53896 16560 53898 16800
n 53901 53902 53903 53904 53905 53906 53907 53908 53909 53910
φ(n) 34944 26950 51048 17952 43120 26952 28800 26952 49680 14352
n 53911 53912 53913 53914 53915 53916 53917 53918 53919 53920
φ(n) 43680 25696 35940 23100 41920 17968 53916 26958 35928 21504
n 53921 53922 53923 53924 53925 53926 53927 53928 53929 53930
φ(n) 46212 15120 53922 23040 28720 26448 53926 15264 53460 21568
n 53931 53932 53933 53934 53935 53936 53937 53938 53939 53940
φ(n) 35952 26496 49020 17600 34848 26960 33120 26640 53938 13440
n 53941 53942 53943 53944 53945 53946 53947 53948 53949 53950
φ(n) 47808 23112 35960 24480 43152 17496 53136 26972 30744 19680
n 53951 53952 53953 53954 53955 53956 53957 53958 53959 53960
φ(n) 53950 17920 53460 26416 25920 22080 53196 16192 53958 20160
n 53961 53962 53963 53964 53965 53966 53967 53968 53969 53970
φ(n) 35972 26980 42624 17976 42000 24420 35976 26976 52080 12288
n 53971 53972 53973 53974 53975 53976 53977 53978 53979 53980
φ(n) 52200 26520 35964 26986 40320 16512 42000 26656 34056 21584
n 53981 53982 53983 53984 53985 53986 53987 53988 53989 53990
φ(n) 51612 17988 52488 23040 27840 26992 53986 16320 49824 21592
n 53991 53992 53993 53994 53995 53996 53997 53998 53999 54000
φ(n) 30816 25344 53992 17996 43192 26996 35040 21168 49080 14400

J.P. Martin-Flatin