]> Euler's Totient Function for n = 47001..48000

Euler's Totient Function for n = 47001..48000


Note: This page uses MathML. To view it properly, you need a MathML-enabled browser. You may also have to install some fonts.


Euler's totient function (also known as the "phi function") counts the number of natural integers less than n that are coprime to n. It is very useful in number theory, e.g. to compute the number of primitive roots modulo a prime n. For more information, see:

The values presented below were computed in 2015 using a Python program.

n 47001 47002 47003 47004 47005 47006 47007 47008 47009 47010
φ(n) 31332 23100 42720 15664 29952 22248 31320 21504 45360 12528
n 47011 47012 47013 47014 47015 47016 47017 47018 47019 47020
φ(n) 46072 19008 31340 21360 37608 15648 47016 23508 26856 18800
n 47021 47022 47023 47024 47025 47026 47027 47028 47029 47030
φ(n) 43392 14720 46168 23504 21600 20148 43200 15672 46540 18808
n 47031 47032 47033 47034 47035 47036 47037 47038 47039 47040
φ(n) 30720 23512 40308 14256 35904 21360 31356 22680 44256 10752
n 47041 47042 47043 47044 47045 47046 47047 47048 47049 47050
φ(n) 47040 22932 31356 22248 37248 15680 33120 23520 31364 18800
n 47051 47052 47053 47054 47055 47056 47057 47058 47059 47060
φ(n) 47050 15672 46620 20160 25088 22016 47056 13200 47058 17280
n 47061 47062 47063 47064 47065 47066 47067 47068 47069 47070
φ(n) 26568 23530 44568 14976 37648 23200 30240 19680 42680 12528
n 47071 47072 47073 47074 47075 47076 47077 47078 47079 47080
φ(n) 46512 23520 26880 23536 32160 15688 46636 23538 31380 16960
n 47081 47082 47083 47084 47085 47086 47087 47088 47089 47090
φ(n) 44528 12528 46648 23088 24192 21720 47086 15552 39060 17664
n 47091 47092 47093 47094 47095 47096 47097 47098 47099 47100
φ(n) 28520 23040 47092 15272 37672 19488 31392 23548 43464 12480
n 47101 47102 47103 47104 47105 47106 47107 47108 47109 47110
φ(n) 42768 21400 26904 22528 37680 15696 44064 23552 30560 16128
n 47111 47112 47113 47114 47115 47116 47117 47118 47119 47120
φ(n) 47110 14400 42820 23556 25056 23556 39312 15704 47118 17280
n 47121 47122 47123 47124 47125 47126 47127 47128 47129 47130
φ(n) 30912 23560 47122 11520 33600 23562 30008 22848 47128 12560
n 47131 47132 47133 47134 47135 47136 47137 47138 47139 47140
φ(n) 40392 23564 31416 23566 34240 15680 47136 18144 29736 18848
n 47141 47142 47143 47144 47145 47146 47147 47148 47149 47150
φ(n) 42688 15552 47142 22960 21504 21420 47146 15712 47148 17600
n 47151 47152 47153 47154 47155 47156 47157 47158 47159 47160
φ(n) 28080 20160 46320 15120 37720 23576 28560 20736 40416 12480
n 47161 47162 47163 47164 47165 47166 47167 47168 47169 47170
φ(n) 47160 23580 30888 21744 37728 13464 46600 21120 31428 18304
n 47171 47172 47173 47174 47175 47176 47177 47178 47179 47180
φ(n) 46032 15720 38544 23256 23040 23584 41040 15720 42880 16128
n 47181 47182 47183 47184 47185 47186 47187 47188 47189 47190
φ(n) 31452 22800 45528 15712 37744 23592 26712 23000 47188 10560
n 47191 47192 47193 47194 47195 47196 47197 47198 47199 47200
φ(n) 46000 22144 31460 20220 37752 14256 46656 23598 31464 18560
n 47201 47202 47203 47204 47205 47206 47207 47208 47209 47210
φ(n) 36720 15732 43560 23600 25152 23602 47206 13440 44416 18880
n 47211 47212 47213 47214 47215 47216 47217 47218 47219 47220
φ(n) 31472 20160 45660 15120 30240 21696 31476 23608 45144 12576
n 47221 47222 47223 47224 47225 47226 47227 47228 47229 47230
φ(n) 47220 20232 28080 23608 37760 14784 46576 23612 24768 18888
n 47231 47232 47233 47234 47235 47236 47237 47238 47239 47240
φ(n) 46512 15360 46768 20160 24288 20160 47236 15744 46656 18880
n 47241 47242 47243 47244 47245 47246 47247 47248 47249 47250
φ(n) 30240 20592 38016 15120 34320 23622 31496 23616 45936 10800
n 47251 47252 47253 47254 47255 47256 47257 47258 47259 47260
φ(n) 47250 23624 29808 23626 34848 14240 39312 23628 30624 17664
n 47261 47262 47263 47264 47265 47266 47267 47268 47269 47270
φ(n) 46812 15752 46800 20160 23936 23632 42960 14400 47268 18144
n 47271 47272 47273 47274 47275 47276 47277 47278 47279 47280
φ(n) 27000 22320 46080 15756 36000 23088 29376 18360 47278 12544
n 47281 47282 47283 47284 47285 47286 47287 47288 47289 47290
φ(n) 43632 23092 31520 23640 32256 15120 47286 22528 28640 18912
n 47291 47292 47293 47294 47295 47296 47297 47298 47299 47300
φ(n) 44460 13488 47292 20352 25200 23616 47296 15764 38976 16800
n 47301 47302 47303 47304 47305 47306 47307 47308 47309 47310
φ(n) 31532 23232 47302 15552 37840 19440 29088 23652 47308 11808
n 47311 47312 47313 47314 47315 47316 47317 47318 47319 47320
φ(n) 38720 23648 27000 23040 37848 15768 47316 23200 31544 14976
n 47321 47322 47323 47324 47325 47326 47327 47328 47329 47330
φ(n) 46644 14280 46008 23660 25200 23662 40560 14336 43056 18928
n 47331 47332 47333 47334 47335 47336 47337 47338 47339 47340
φ(n) 31536 23664 39600 12936 37864 23040 30480 23668 47338 12576
n 47341 47342 47343 47344 47345 47346 47347 47348 47349 47350
φ(n) 40572 23670 30744 21440 35584 14544 46816 19008 31560 18920
n 47351 47352 47353 47354 47355 47356 47357 47358 47359 47360
φ(n) 47350 15776 47352 23676 19200 23676 43120 15768 43704 18432
n 47361 47362 47363 47364 47365 47366 47367 47368 47369 47370
φ(n) 31572 19008 47362 15784 37888 21520 29808 22800 39600 12624
n 47371 47372 47373 47374 47375 47376 47377 47378 47379 47380
φ(n) 46872 21840 31580 23686 37800 13248 41760 23688 29696 17952
n 47381 47382 47383 47384 47385 47386 47387 47388 47389 47390
φ(n) 47380 15392 40572 23688 23328 21168 47386 14320 47388 16224
n 47391 47392 47393 47394 47395 47396 47397 47398 47399 47400
φ(n) 31592 23680 46740 15792 37912 21760 25920 21864 41400 12480
n 47401 47402 47403 47404 47405 47406 47407 47408 47409 47410
φ(n) 46852 23392 30096 20304 35856 15800 47406 23696 31604 17200
n 47411 47412 47413 47414 47415 47416 47417 47418 47419 47420
φ(n) 37440 15768 44608 23400 24192 23704 47416 13536 47418 18960
n 47421 47422 47423 47424 47425 47426 47427 47428 47429 47430
φ(n) 28680 23400 46368 13824 32400 22660 31616 23240 46284 11520
n 47431 47432 47433 47434 47435 47436 47437 47438 47439 47440
φ(n) 47430 18480 31104 23040 37024 15312 42240 23718 27000 18944
n 47441 47442 47443 47444 47445 47446 47447 47448 47449 47450
φ(n) 47440 15812 40680 22848 25296 20328 44640 15792 45364 17280
n 47451 47452 47453 47454 47455 47456 47457 47458 47459 47460
φ(n) 31632 23724 40668 14360 37960 23712 31632 23280 47458 10752
n 47461 47462 47463 47464 47465 47466 47467 47468 47469 47470
φ(n) 45900 22464 29184 22272 34480 15768 40680 23732 31644 18400
n 47471 47472 47473 47474 47475 47476 47477 47478 47479 47480
φ(n) 46152 14784 45808 20340 25200 19680 47040 15360 46800 18976
n 47481 47482 47483 47484 47485 47486 47487 47488 47489 47490
φ(n) 24192 23740 46920 15816 37984 23742 28760 19968 43680 12656
n 47491 47492 47493 47494 47495 47496 47497 47498 47499 47500
φ(n) 47490 22920 31644 23746 30624 15824 47496 20160 31080 18000
n 47501 47502 47503 47504 47505 47506 47507 47508 47509 47510
φ(n) 47500 12096 46728 23744 25328 23752 47506 15264 36960 19000
n 47511 47512 47513 47514 47515 47516 47517 47518 47519 47520
φ(n) 31668 23752 47512 15836 32256 20352 30912 22704 43200 11520
n 47521 47522 47523 47524 47525 47526 47527 47528 47529 47530
φ(n) 47520 23760 25920 23544 38000 15664 47526 21888 31680 16128
n 47531 47532 47533 47534 47535 47536 47537 47538 47539 47540
φ(n) 41440 14848 47532 23766 25344 23760 40740 14904 47056 19008
n 47541 47542 47543 47544 47545 47546 47547 47548 47549 47550
φ(n) 27456 21600 47542 13536 36864 23772 31644 23772 44736 12640
n 47551 47552 47553 47554 47555 47556 47557 47558 47559 47560
φ(n) 40752 23744 28600 20880 38040 15840 45036 19656 31160 17920
n 47561 47562 47563 47564 47565 47566 47567 47568 47569 47570
φ(n) 47124 15852 47562 20240 21600 22368 43896 15840 47568 18480
n 47571 47572 47573 47574 47575 47576 47577 47578 47579 47580
φ(n) 31200 20376 47040 15840 34400 22464 31716 23788 40740 11520
n 47581 47582 47583 47584 47585 47586 47587 47588 47589 47590
φ(n) 47580 23112 29760 23776 36720 12240 45496 23792 30576 19032
n 47591 47592 47593 47594 47595 47596 47597 47598 47599 47600
φ(n) 47590 15840 37584 23296 23904 23328 43260 15864 47598 15360
n 47601 47602 47603 47604 47605 47606 47607 47608 47609 47610
φ(n) 30240 23800 47160 15864 38080 21960 27192 21600 47608 12144
n 47611 47612 47613 47614 47615 47616 47617 47618 47619 47620
φ(n) 46552 23804 31088 19224 37312 15360 44800 22960 25920 19040
n 47621 47622 47623 47624 47625 47626 47627 47628 47629 47630
φ(n) 40812 15872 47622 23808 25200 23812 47040 13608 47628 17280
n 47631 47632 47633 47634 47635 47636 47637 47638 47639 47640
φ(n) 31752 21888 42768 14912 32640 23816 30888 23818 47638 12672
n 47641 47642 47643 47644 47645 47646 47647 47648 47649 47650
φ(n) 42000 19680 31760 23184 35136 15876 43680 23808 27216 19040
n 47651 47652 47653 47654 47655 47656 47657 47658 47659 47660
φ(n) 44832 13680 47652 23826 25344 19008 47656 14352 47658 19056
n 47661 47662 47663 47664 47665 47666 47667 47668 47669 47670
φ(n) 31772 23830 37080 15840 38128 23832 31776 22400 46944 10848
n 47671 47672 47673 47674 47675 47676 47677 47678 47679 47680
φ(n) 41472 23200 31776 21560 38120 15232 40572 23040 30360 18944
n 47681 47682 47683 47684 47685 47686 47687 47688 47689 47690
φ(n) 47680 15876 46480 18720 21760 23520 46536 15888 47124 18000
n 47691 47692 47693 47694 47695 47696 47697 47698 47699 47700
φ(n) 27216 23844 46368 15896 38152 21600 29328 20436 47698 12480
n 47701 47702 47703 47704 47705 47706 47707 47708 47709 47710
φ(n) 47700 21120 31800 23232 30912 15900 43360 23852 29160 17568
n 47711 47712 47713 47714 47715 47716 47717 47718 47719 47720
φ(n) 47710 13440 47712 23856 25440 23400 47716 14400 38400 19072
n 47721 47722 47723 47724 47725 47726 47727 47728 47729 47730
φ(n) 31812 23532 44040 15360 36080 20412 31812 22464 43380 12096
n 47731 47732 47733 47734 47735 47736 47737 47738 47739 47740
φ(n) 46864 23864 27264 23016 38184 13824 47736 23868 31824 14400
n 47741 47742 47743 47744 47745 47746 47747 47748 47749 47750
φ(n) 47740 15552 47742 23808 25440 23872 38664 15136 44064 19000
n 47751 47752 47753 47754 47755 47756 47757 47758 47759 47760
φ(n) 28920 23184 44096 13608 38200 23876 31836 23878 47304 12672
n 47761 47762 47763 47764 47765 47766 47767 47768 47769 47770
φ(n) 40932 19920 30240 23880 37120 15048 46440 20448 31844 17920
n 47771 47772 47773 47774 47775 47776 47777 47778 47779 47780
φ(n) 43560 15912 42000 23886 20160 23872 47776 15924 47778 19104
n 47781 47782 47783 47784 47785 47786 47787 47788 47789 47790
φ(n) 31848 20472 47040 14400 36144 23892 29952 22032 40956 12528
n 47791 47792 47793 47794 47795 47796 47797 47798 47799 47800
φ(n) 47790 22848 31328 22836 34320 13632 47796 23898 30912 19040
n 47801 47802 47803 47804 47805 47806 47807 47808 47809 47810
φ(n) 44112 15360 40968 20736 25488 20800 47806 15744 47808 16368
n 47811 47812 47813 47814 47815 47816 47817 47818 47819 47820
φ(n) 31872 23904 47328 14688 37440 23184 23760 23908 47818 12736
n 47821 47822 47823 47824 47825 47826 47827 47828 47829 47830
φ(n) 43008 23910 30168 20160 38240 15936 43992 21720 31376 19128
n 47831 47832 47833 47834 47835 47836 47837 47838 47839 47840
φ(n) 40992 15936 46260 23916 25488 23916 47836 12672 43480 16896
n 47841 47842 47843 47844 47845 47846 47847 47848 47849 47850
φ(n) 30960 22644 47842 15912 32784 23368 31040 23920 46980 11200
n 47851 47852 47853 47854 47855 47856 47857 47858 47859 47860
φ(n) 47304 20496 29376 23520 35968 15936 47856 23928 26208 19136
n 47861 47862 47863 47864 47865 47866 47867 47868 47869 47870
φ(n) 41040 15948 45760 23040 25520 18864 47400 15952 47868 19144
n 47871 47872 47873 47874 47875 47876 47877 47878 47879 47880
φ(n) 31752 20480 40992 15600 38200 23936 31916 23256 42336 10368
n 47881 47882 47883 47884 47885 47886 47887 47888 47889 47890
φ(n) 47880 23584 29000 23940 37440 15224 41040 23040 29952 19152
n 47891 47892 47893 47894 47895 47896 47897 47898 47899 47900
φ(n) 47232 14688 46828 18600 24480 23944 47460 15948 45360 19120
n 47901 47902 47903 47904 47905 47906 47907 47908 47909 47910
φ(n) 27360 23352 47902 15936 31680 22528 31932 19488 45804 12768
n 47911 47912 47913 47914 47915 47916 47917 47918 47919 47920
φ(n) 47910 23296 31940 23956 31968 14520 47916 20736 31944 19136
n 47921 47922 47923 47924 47925 47926 47927 47928 47929 47930
φ(n) 47472 13608 45088 23960 25200 23160 43560 15968 39840 19168
n 47931 47932 47933 47934 47935 47936 47937 47938 47939 47940
φ(n) 29472 22880 47932 15972 38344 20352 29232 21780 47938 11776
n 47941 47942 47943 47944 47945 47946 47947 47948 47949 47950
φ(n) 47500 23970 27360 22080 37296 15600 47946 23972 29040 16320
n 47951 47952 47953 47954 47955 47956 47957 47958 47959 47960
φ(n) 47950 15552 47268 23976 24288 22680 34560 15984 47520 17280
n 47961 47962 47963 47964 47965 47966 47967 47968 47969 47970
φ(n) 31536 23980 47962 13680 37440 23128 31320 23968 47968 11520
n 47971 47972 47973 47974 47975 47976 47977 47978 47979 47980
φ(n) 36960 23496 31980 22304 36000 15984 47976 19536 31968 19184
n 47981 47982 47983 47984 47985 47986 47987 47988 47989 47990
φ(n) 47980 14520 44280 23984 21888 23992 46920 15120 46656 19192
n 47991 47992 47993 47994 47995 47996 47997 47998 47999 48000
φ(n) 30080 20544 43620 15120 36960 21840 31992 23664 41136 12800

J.P. Martin-Flatin