]> Euler's Totient Function for n = 46001..47000

Euler's Totient Function for n = 46001..47000


Note: This page uses MathML. To view it properly, you need a MathML-enabled browser. You may also have to install some fonts.


Euler's totient function (also known as the "phi function") counts the number of natural integers less than n that are coprime to n. It is very useful in number theory, e.g. to compute the number of primitive roots modulo a prime n. For more information, see:

The values presented below were computed in 2015 using a Python program.

n 46001 46002 46003 46004 46005 46006 46007 46008 46009 46010
φ(n) 45552 12800 45568 18720 24528 23002 42456 15120 45540 17808
n 46011 46012 46013 46014 46015 46016 46017 46018 46019 46020
φ(n) 26208 23004 40480 15336 36808 22976 30672 18576 43296 11136
n 46021 46022 46023 46024 46025 46026 46027 46028 46029 46030
φ(n) 46020 23010 28336 20880 31440 15336 46026 22320 30096 18408
n 46031 46032 46033 46034 46035 46036 46037 46038 46039 46040
φ(n) 45600 13056 42480 23016 21600 21632 43596 15344 39456 18400
n 46041 46042 46043 46044 46045 46046 46047 46048 46049 46050
φ(n) 30192 23020 44880 15336 36832 15840 30696 23008 46048 12240
n 46051 46052 46053 46054 46055 46056 46057 46058 46059 46060
φ(n) 46050 22176 24192 23026 36000 14400 40560 23028 28320 15456
n 46061 46062 46063 46064 46065 46066 46067 46068 46069 46070
φ(n) 46060 15336 45360 23024 23616 22260 39480 13920 44044 17280
n 46071 46072 46073 46074 46075 46076 46077 46078 46079 46080
φ(n) 30708 21216 46072 13152 34560 23036 30716 23038 40600 12288
n 46081 46082 46083 46084 46085 46086 46087 46088 46089 46090
φ(n) 37968 23040 30720 22400 33984 15360 43360 19728 30672 16720
n 46091 46092 46093 46094 46095 46096 46097 46098 46099 46100
φ(n) 46090 14608 46092 21816 21024 22176 44580 14112 46098 18400
n 46101 46102 46103 46104 46105 46106 46107 46108 46109 46110
φ(n) 27720 19008 46102 14336 36880 23052 29808 23052 39480 11648
n 46111 46112 46113 46114 46115 46116 46117 46118 46119 46120
φ(n) 42552 20800 29088 23056 35200 12960 45580 23058 30744 18432
n 46121 46122 46123 46124 46125 46126 46127 46128 46129 46130
φ(n) 43392 15372 35880 21264 24000 23062 45696 14880 45684 15792
n 46131 46132 46133 46134 46135 46136 46137 46138 46139 46140
φ(n) 30752 21816 46132 13920 36904 22464 24336 20416 42336 12288
n 46141 46142 46143 46144 46145 46146 46147 46148 46149 46150
φ(n) 46140 23070 30744 19584 33520 15380 46146 22632 30764 16800
n 46151 46152 46153 46154 46155 46156 46157 46158 46159 46160
φ(n) 37368 15360 46152 22540 23040 20960 45600 13104 44640 18432
n 46161 46162 46163 46164 46165 46166 46167 46168 46169 46170
φ(n) 29304 23080 41184 15384 31632 22480 27960 22176 45696 11664
n 46171 46172 46173 46174 46175 46176 46177 46178 46179 46180
φ(n) 46170 18432 30780 23086 36920 13824 45360 20980 26352 18464
n 46181 46182 46183 46184 46185 46186 46187 46188 46189 46190
φ(n) 46180 14952 46182 22000 24624 19788 46186 15384 34560 17760
n 46191 46192 46193 46194 46195 46196 46197 46198 46199 46200
φ(n) 30272 23088 39588 15396 36952 23096 29232 23098 46198 9600
n 46201 46202 46203 46204 46205 46206 46207 46208 46209 46210
φ(n) 45172 21312 30800 23100 36960 14400 36960 21888 30240 18480
n 46211 46212 46213 46214 46215 46216 46217 46218 46219 46220
φ(n) 42000 15400 44928 19800 22464 22464 45696 15404 46218 18480
n 46221 46222 46223 46224 46225 46226 46227 46228 46229 46230
φ(n) 25200 20900 43488 15264 36120 22288 29160 18144 46228 11616
n 46231 46232 46233 46234 46235 46236 46237 46238 46239 46240
φ(n) 45592 23112 27960 23116 31680 15408 46236 22680 30824 17408
n 46241 46242 46243 46244 46245 46246 46247 46248 46249 46250
φ(n) 42672 13176 45760 21000 24656 21888 45696 14720 39636 18000
n 46251 46252 46253 46254 46255 46256 46257 46258 46259 46260
φ(n) 30780 22320 44220 14208 32480 19488 28992 22800 45816 12288
n 46261 46262 46263 46264 46265 46266 46267 46268 46269 46270
φ(n) 46260 23130 26424 23128 34992 14000 42696 22512 29952 15840
n 46271 46272 46273 46274 46275 46276 46277 46278 46279 46280
φ(n) 46270 15360 46272 21760 24640 22088 36000 15408 46278 16896
n 46281 46282 46283 46284 46285 46286 46287 46288 46289 46290
φ(n) 30852 22752 44760 12096 37024 23142 29808 20960 45120 12336
n 46291 46292 46293 46294 46295 46296 46297 46298 46299 46300
φ(n) 37248 22680 28464 22776 36064 15408 45540 19836 26400 18480
n 46301 46302 46303 46304 46305 46306 46307 46308 46309 46310
φ(n) 46300 15432 43848 23136 21168 21216 46306 14464 46308 16800
n 46311 46312 46313 46314 46315 46316 46317 46318 46319 46320
φ(n) 30072 19824 44688 14760 36192 23156 30876 23158 36576 12288
n 46321 46322 46323 46324 46325 46326 46327 46328 46329 46330
φ(n) 42100 20592 30876 22464 34560 13224 46326 23160 30884 17920
n 46331 46332 46333 46334 46335 46336 46337 46338 46339 46340
φ(n) 45792 12960 39708 23166 24704 23040 46336 15444 45880 15840
n 46341 46342 46343 46344 46345 46346 46347 46348 46349 46350
φ(n) 29160 20608 42020 15440 31680 23172 26472 23172 46348 12240
n 46351 46352 46353 46354 46355 46356 46357 46358 46359 46360
φ(n) 46350 23168 30900 17640 36288 15448 45900 21384 28800 17280
n 46361 46362 46363 46364 46365 46366 46367 46368 46369 46370
φ(n) 38448 15452 45640 22704 22400 22848 45936 12672 45760 18544
n 46371 46372 46373 46374 46375 46376 46377 46378 46379 46380
φ(n) 26880 23184 45708 15080 31200 19200 30912 23188 43920 12352
n 46381 46382 46383 46384 46385 46386 46387 46388 46389 46390
φ(n) 46380 19872 30920 21312 37104 15444 42160 23192 25944 18552
n 46391 46392 46393 46394 46395 46396 46397 46398 46399 46400
φ(n) 44352 15456 43648 23196 24720 19872 41328 12960 46398 17920
n 46401 46402 46403 46404 46405 46406 46407 46408 46409 46410
φ(n) 30932 23200 39732 15456 37120 23202 29880 23200 42180 9216
n 46411 46412 46413 46414 46415 46416 46417 46418 46419 46420
φ(n) 46410 22560 30780 22176 37128 15456 37584 23208 30944 16800
n 46421 46422 46423 46424 46425 46426 46427 46428 46429 46430
φ(n) 45600 15468 42840 19872 24720 22908 43680 14976 44800 18568
n 46431 46432 46433 46434 46435 46436 46437 46438 46439 46440
φ(n) 23760 23200 45588 15120 36000 19872 29568 19080 46438 12096
n 46441 46442 46443 46444 46445 46446 46447 46448 46449 46450
φ(n) 46440 21100 30464 21824 31824 15480 46446 23216 28512 18560
n 46451 46452 46453 46454 46455 46456 46457 46458 46459 46460
φ(n) 46450 13104 40800 23226 23328 23224 46456 14784 39816 17600
n 46461 46462 46463 46464 46465 46466 46467 46468 46469 46470
φ(n) 29120 21432 45888 14080 37168 19908 30960 23232 44940 12384
n 46471 46472 46473 46474 46475 46476 46477 46478 46479 46480
φ(n) 46470 22464 26544 21996 31200 15480 46476 21856 30984 15744
n 46481 46482 46483 46484 46485 46486 46487 46488 46489 46490
φ(n) 45552 15120 42504 23240 24768 21120 38304 14208 46488 18592
n 46491 46492 46493 46494 46495 46496 46497 46498 46499 46500
φ(n) 30992 22736 44028 12960 34944 23232 28160 22836 46498 12000
n 46501 46502 46503 46504 46505 46506 46507 46508 46509 46510
φ(n) 36288 23250 30996 23248 36400 14784 46506 18000 30096 18600
n 46511 46512 46513 46514 46515 46516 46517 46518 46519 46520
φ(n) 46510 13824 46080 21456 21216 22400 46080 15504 42280 18592
n 46521 46522 46523 46524 46525 46526 46527 46528 46529 46530
φ(n) 30996 19932 46522 15504 37200 22680 28608 23232 35904 11040
n 46531 46532 46533 46534 46535 46536 46537 46538 46539 46540
φ(n) 42120 23264 31020 22776 36160 13248 46096 23268 31020 17088
n 46541 46542 46543 46544 46545 46546 46547 46548 46549 46550
φ(n) 42300 15512 38880 23264 23744 21312 45936 15480 46548 15120
n 46551 46552 46553 46554 46555 46556 46557 46558 46559 46560
φ(n) 30392 20240 42960 15516 37240 22848 26568 23278 46558 12288
n 46561 46562 46563 46564 46565 46566 46567 46568 46569 46570
φ(n) 46000 22500 26240 19944 36432 14256 46566 23280 28728 18624
n 46571 46572 46573 46574 46575 46576 46577 46578 46579 46580
φ(n) 39912 15520 46572 20160 23760 22400 45540 13296 42984 17408
n 46581 46582 46583 46584 46585 46586 46587 46588 46589 46590
φ(n) 31052 23290 45288 15504 29040 23292 30368 22032 46588 12416
n 46591 46592 46593 46594 46595 46596 46597 46598 46599 46600
φ(n) 46590 18432 29880 23296 37272 14080 43840 22264 26544 18560
n 46601 46602 46603 46604 46605 46606 46607 46608 46609 46610
φ(n) 46600 15516 44968 22800 22848 19968 39960 15520 46116 18096
n 46611 46612 46613 46614 46615 46616 46617 46618 46619 46620
φ(n) 31068 22680 39948 14592 37288 23304 30240 19440 46618 10368
n 46621 46622 46623 46624 46625 46626 46627 46628 46629 46630
φ(n) 44572 23310 31080 22080 37200 14688 39960 23312 28080 18648
n 46631 46632 46633 46634 46635 46636 46637 46638 46639 46640
φ(n) 40320 14784 46632 19980 24864 22880 46176 15540 46638 16640
n 46641 46642 46643 46644 46645 46646 46647 46648 46649 46650
φ(n) 26640 23320 46642 13728 35280 22960 30240 18816 46648 12400
n 46651 46652 46653 46654 46655 46656 46657 46658 46659 46660
φ(n) 42400 22896 31100 23326 30240 15552 41472 22720 30600 18656
n 46661 46662 46663 46664 46665 46666 46667 46668 46669 46670
φ(n) 45024 12000 46662 22032 23040 23332 44616 15552 38976 17184
n 46671 46672 46673 46674 46675 46676 46677 46678 46679 46680
φ(n) 30360 23328 42420 15552 37320 19992 31116 23338 46678 12416
n 46681 46682 46683 46684 46685 46686 46687 46688 46689 46690
φ(n) 46680 21952 23328 21200 37344 15000 46686 23328 30576 14784
n 46691 46692 46693 46694 46695 46696 46697 46698 46699 46700
φ(n) 46690 15552 45760 22680 22560 21504 39984 15120 42240 18640
n 46701 46702 46703 46704 46705 46706 46707 46708 46709 46710
φ(n) 31128 22104 46702 13248 37360 21120 31136 23352 43104 12384
n 46711 46712 46713 46714 46715 46716 46717 46718 46719 46720
φ(n) 40032 23352 29744 23356 37368 14592 40800 19320 29904 18432
n 46721 46722 46723 46724 46725 46726 46727 46728 46729 46730
φ(n) 44244 14352 46722 23360 21120 22920 46726 13920 46084 18688
n 46731 46732 46733 46734 46735 46736 46737 46738 46739 46740
φ(n) 30240 20016 43968 15576 34464 22176 31104 23368 36360 11520
n 46741 46742 46743 46744 46745 46746 46747 46748 46749 46750
φ(n) 45612 23370 31160 23368 37392 13104 46746 20160 31164 16000
n 46751 46752 46753 46754 46755 46756 46757 46758 46759 46760
φ(n) 46750 15552 40068 23040 24912 23376 46756 15584 41976 15936
n 46761 46762 46763 46764 46765 46766 46767 46768 46769 46770
φ(n) 25920 23052 46200 15552 36432 22968 24960 22464 46768 12464
n 46771 46772 46773 46774 46775 46776 46777 46778 46779 46780
φ(n) 46770 21240 31176 18432 37400 15584 45136 22140 30120 18704
n 46781 46782 46783 46784 46785 46786 46787 46788 46789 46790
φ(n) 38880 14784 42520 21504 24944 23088 41760 13344 46060 18712
n 46791 46792 46793 46794 46795 46796 46797 46798 46799 46800
φ(n) 31176 23392 46080 14160 31920 23396 29520 23398 45864 11520
n 46801 46802 46803 46804 46805 46806 46807 46808 46809 46810
φ(n) 44032 20052 31200 23400 31680 15008 46806 23400 26712 18000
n 46811 46812 46813 46814 46815 46816 46817 46818 46819 46820
φ(n) 46810 15088 43056 23056 24960 17280 46816 14688 46818 18720
n 46821 46822 46823 46824 46825 46826 46827 46828 46829 46830
φ(n) 31212 22800 40128 15600 37440 21600 27720 22352 46828 10656
n 46831 46832 46833 46834 46835 46836 46837 46838 46839 46840
φ(n) 46830 23408 30624 23416 32256 15600 40140 21280 28800 18720
n 46841 46842 46843 46844 46845 46846 46847 46848 46849 46850
φ(n) 45300 15120 46368 19992 24912 22968 46176 15360 42580 18720
n 46851 46852 46853 46854 46855 46856 46857 46858 46859 46860
φ(n) 25344 19968 46852 14688 37480 23424 31236 20076 45816 11200
n 46861 46862 46863 46864 46865 46866 46867 46868 46869 46870
φ(n) 46860 23430 30240 22400 29376 15264 46866 23432 29376 18144
n 46871 46872 46873 46874 46875 46876 46877 46878 46879 46880
φ(n) 42600 12960 44388 22396 25000 23436 46876 14400 38880 18688
n 46881 46882 46883 46884 46885 46886 46887 46888 46889 46890
φ(n) 31248 21300 46440 15624 37504 18816 31256 23440 46888 12480
n 46891 46892 46893 46894 46895 46896 46897 46898 46899 46900
φ(n) 43272 22176 23520 23446 36736 15616 44836 23140 31104 15840
n 46901 46902 46903 46904 46905 46906 46907 46908 46909 46910
φ(n) 46900 15632 42240 19200 24128 22908 40200 15624 46080 18760
n 46911 46912 46913 46914 46915 46916 46917 46918 46919 46920
φ(n) 29592 23424 45780 13392 34080 22752 28800 23458 46918 11264
n 46921 46922 46923 46924 46925 46926 46927 46928 46929 46930
φ(n) 40212 22624 31280 23460 37520 14040 46480 20064 31284 16416
n 46931 46932 46933 46934 46935 46936 46937 46938 46939 46940
φ(n) 46200 15640 46932 22680 21312 23464 40000 15644 46224 18768
n 46941 46942 46943 46944 46945 46946 46947 46948 46949 46950
φ(n) 31292 20076 41184 15552 36480 23472 31296 21120 38016 12480
n 46951 46952 46953 46954 46955 46956 46957 46958 46959 46960
φ(n) 45304 23472 29808 22080 37560 12096 46956 22984 28440 18752
n 46961 46962 46963 46964 46965 46966 46967 46968 46969 46970
φ(n) 46500 15648 40248 22968 24000 22440 46200 14688 43344 14400
n 46971 46972 46973 46974 46975 46976 46977 46978 46979 46980
φ(n) 29376 23484 46428 15656 37560 23424 26832 23124 46440 12096
n 46981 46982 46983 46984 46985 46986 46987 46988 46989 46990
φ(n) 42700 21528 31320 20112 37584 15200 44496 22080 29832 18144
n 46991 46992 46993 46994 46995 46996 46997 46998 46999 47000
φ(n) 39984 14080 46992 23496 23040 22680 46996 13392 45864 18400

J.P. Martin-Flatin