]> Euler's Totient Function for n = 41001..42000

Euler's Totient Function for n = 41001..42000


Note: This page uses MathML. To view it properly, you need a MathML-enabled browser. You may also have to install some fonts.


Euler's totient function (also known as the "phi function") counts the number of natural integers less than n that are coprime to n. It is very useful in number theory, e.g. to compute the number of primitive roots modulo a prime n. For more information, see:

The values presented below were computed in 2015 using a Python program.

n 41001 41002 41003 41004 41005 41006 41007 41008 41009 41010
φ(n) 26832 17712 40560 12672 32016 16800 27336 18560 39204 10928
n 41011 41012 41013 41014 41015 41016 41017 41018 41019 41020
φ(n) 41010 20504 22680 20506 30240 13664 41016 20508 24640 14016
n 41021 41022 41023 41024 41025 41026 41027 41028 41029 41030
φ(n) 36288 13104 41022 20480 21840 20160 35160 12576 40480 14880
n 41031 41032 41033 41034 41035 41036 41037 41038 41039 41040
φ(n) 26496 19536 39888 11712 31584 20516 27356 19040 41038 10368
n 41041 41042 41043 41044 41045 41046 41047 41048 41049 41050
φ(n) 28800 20520 27360 19800 32832 13680 41046 17568 27360 16400
n 41051 41052 41053 41054 41055 41056 41057 41058 41059 41060
φ(n) 41050 12400 40320 18936 16896 20512 41056 13680 38880 16416
n 41061 41062 41063 41064 41065 41066 41067 41068 41069 41070
φ(n) 27372 17556 37320 12992 31920 20532 25272 20532 35196 10656
n 41071 41072 41073 41074 41075 41076 41077 41078 41079 41080
φ(n) 40392 19200 27380 18660 31200 11664 41076 18216 27384 14976
n 41081 41082 41083 41084 41085 41086 41087 41088 41089 41090
φ(n) 41080 13280 35208 20540 19680 20542 40680 13568 38656 14064
n 41091 41092 41093 41094 41095 41096 41097 41098 41099 41100
φ(n) 27392 20544 36288 13680 32872 18640 22032 20548 40464 10880
n 41101 41102 41103 41104 41105 41106 41107 41108 41109 41110
φ(n) 39292 20550 27396 17568 32880 11520 36000 19992 26880 16440
n 41111 41112 41113 41114 41115 41116 41117 41118 41119 41120
φ(n) 35196 13680 41112 20160 21920 19440 41116 10560 37944 16384
n 41121 41122 41123 41124 41125 41126 41127 41128 41129 41130
φ(n) 27396 19824 37120 13024 27600 20562 27416 19968 37380 10944
n 41131 41132 41133 41134 41135 41136 41137 41138 41139 41140
φ(n) 41130 16128 27420 20280 31104 13696 39780 20196 23472 14080
n 41141 41142 41143 41144 41145 41146 41147 41148 41149 41150
φ(n) 41140 13712 41142 19872 20160 17628 39336 13608 41148 16440
n 41151 41152 41153 41154 41155 41156 41157 41158 41159 41160
φ(n) 23520 20544 35268 12996 32920 20576 25728 18984 40560 9408
n 41161 41162 41163 41164 41165 41166 41167 41168 41169 41170
φ(n) 41160 18700 27440 20000 32928 13716 35280 19680 27444 15664
n 41171 41172 41173 41174 41175 41176 41177 41178 41179 41180
φ(n) 37992 13248 35280 16512 21600 20584 41176 13724 41178 15680
n 41181 41182 41183 41184 41185 41186 41187 41188 41189 41190
φ(n) 22464 20184 41182 11520 32944 20592 27456 17640 41188 10976
n 41191 41192 41193 41194 41195 41196 41197 41198 41199 41200
φ(n) 38752 19440 26136 20076 25440 13728 38016 20598 26520 16320
n 41201 41202 41203 41204 41205 41206 41207 41208 41209 41210
φ(n) 41200 11664 41202 20600 21120 18720 40656 12800 34104 15168
n 41211 41212 41213 41214 41215 41216 41217 41218 41219 41220
φ(n) 25920 20604 41212 13736 32968 16896 24960 20016 40296 10944
n 41221 41222 41223 41224 41225 41226 41227 41228 41229 41230
φ(n) 41220 20610 21600 20608 30720 13740 41226 18720 27432 12960
n 41231 41232 41233 41234 41235 41236 41237 41238 41239 41240
φ(n) 41230 13728 41232 20176 21984 18720 34272 13104 35640 16480
n 41241 41242 41243 41244 41245 41246 41247 41248 41249 41250
φ(n) 26912 19392 41242 11760 32256 20080 27492 20608 35856 10000
n 41251 41252 41253 41254 41255 41256 41257 41258 41259 41260
φ(n) 34440 20624 27500 20626 31968 13680 41256 17640 25856 16496
n 41261 41262 41263 41264 41265 41266 41267 41268 41269 41270
φ(n) 36300 12144 41262 20624 18720 20148 39816 12960 41268 16504
n 41271 41272 41273 41274 41275 41276 41277 41278 41279 41280
φ(n) 27512 15840 40848 13752 30240 19392 27516 20638 35376 10752
n 41281 41282 41283 41284 41285 41286 41287 41288 41289 41290
φ(n) 41280 20640 24840 20640 31504 11784 37440 19008 27524 16512
n 41291 41292 41293 41294 41295 41296 41297 41298 41299 41300
φ(n) 40872 12960 33216 18760 22016 19712 40560 13764 41298 13920
n 41301 41302 41303 41304 41305 41306 41307 41308 41309 41310
φ(n) 25344 20352 40800 13760 30000 19548 23520 19712 40800 10368
n 41311 41312 41313 41314 41315 41316 41317 41318 41319 41320
φ(n) 40824 20640 26864 16272 33048 12480 40716 20304 27540 16512
n 41321 41322 41323 41324 41325 41326 41327 41328 41329 41330
φ(n) 35412 13440 39060 20660 20160 20662 32640 11520 40176 16528
n 41331 41332 41333 41334 41335 41336 41337 41338 41339 41340
φ(n) 26312 20664 41332 13612 28320 20664 27540 18780 40656 9984
n 41341 41342 41343 41344 41345 41346 41347 41348 41349 41350
φ(n) 41340 17712 27560 18432 33072 13776 40936 20672 21360 16520
n 41351 41352 41353 41354 41355 41356 41357 41358 41359 41360
φ(n) 41350 13776 38160 18480 22032 17640 41356 13440 40600 14720
n 41361 41362 41363 41364 41365 41366 41367 41368 41369 41370
φ(n) 25920 20680 33480 13752 33088 18144 27576 20680 40320 9408
n 41371 41372 41373 41374 41375 41376 41377 41378 41379 41380
φ(n) 37600 20684 27576 20400 33000 13760 33792 19456 25440 16544
n 41381 41382 41383 41384 41385 41386 41387 41388 41389 41390
φ(n) 41380 11880 39928 17712 21120 20692 41386 13792 41388 16552
n 41391 41392 41393 41394 41395 41396 41397 41398 41399 41400
φ(n) 23328 19008 36400 13796 31104 20280 27596 17736 41398 10560
n 41401 41402 41403 41404 41405 41406 41407 41408 41409 41410
φ(n) 39204 20412 26784 18800 26208 13464 40480 20672 26712 16000
n 41411 41412 41413 41414 41415 41416 41417 41418 41419 41420
φ(n) 41410 10752 41412 20706 20000 19920 40836 12528 34560 15552
n 41421 41422 41423 41424 41425 41426 41427 41428 41429 41430
φ(n) 27612 20424 39600 13792 33120 16080 27612 20712 38976 11040
n 41431 41432 41433 41434 41435 41436 41437 41438 41439 41440
φ(n) 38232 20712 23664 20716 33144 13800 37660 20718 26136 13824
n 41441 41442 41443 41444 41445 41446 41447 41448 41449 41450
φ(n) 39984 13812 41442 19104 22032 18304 34200 12480 41040 16560
n 41451 41452 41453 41454 41455 41456 41457 41458 41459 41460
φ(n) 26880 20160 41452 11592 33160 20720 25488 19620 37680 11040
n 41461 41462 41463 41464 41465 41466 41467 41468 41469 41470
φ(n) 35532 20730 25920 20160 33168 13820 41466 17760 26400 13440
n 41471 41472 41473 41474 41475 41476 41477 41478 41479 41480
φ(n) 40992 13824 40788 20416 18720 20736 37584 13320 41478 15360
n 41481 41482 41483 41484 41485 41486 41487 41488 41489 41490
φ(n) 25080 17772 38280 13824 33184 20742 27656 20736 35556 11040
n 41491 41492 41493 41494 41495 41496 41497 41498 41499 41500
φ(n) 41490 17600 27660 20746 32256 10368 39040 20748 26208 16400
n 41501 41502 41503 41504 41505 41506 41507 41508 41509 41510
φ(n) 40572 13832 32340 20736 22128 20752 41506 13824 36720 14208
n 41511 41512 41513 41514 41515 41516 41517 41518 41519 41520
φ(n) 27200 20752 41512 11520 30096 20352 23688 20758 41518 11008
n 41521 41522 41523 41524 41525 41526 41527 41528 41529 41530
φ(n) 41520 19152 27680 17784 30000 13824 41080 19936 27216 16608
n 41531 41532 41533 41534 41535 41536 41537 41538 41539 41540
φ(n) 33408 13840 40480 19656 20160 18560 40896 11088 41538 15840
n 41541 41542 41543 41544 41545 41546 41547 41548 41549 41550
φ(n) 27120 20770 41542 13824 28464 20772 25160 17664 41548 11040
n 41551 41552 41553 41554 41555 41556 41557 41558 41559 41560
φ(n) 40392 17472 26244 20436 33240 13848 40096 18880 23736 16608
n 41561 41562 41563 41564 41565 41566 41567 41568 41569 41570
φ(n) 36432 13848 41008 20780 20736 17808 41160 13824 37780 16624
n 41571 41572 41573 41574 41575 41576 41577 41578 41579 41580
φ(n) 26640 19656 35628 12480 33240 20784 27716 20788 41578 8640
n 41581 41582 41583 41584 41585 41586 41587 41588 41589 41590
φ(n) 40572 19552 27224 19712 33264 13328 32832 20160 27720 16632
n 41591 41592 41593 41594 41595 41596 41597 41598 41599 41600
φ(n) 35640 13856 41592 17820 21344 20796 41596 13860 39136 15360
n 41601 41602 41603 41604 41605 41606 41607 41608 41609 41610
φ(n) 23688 18000 41602 13864 32448 20440 26136 17808 41608 10368
n 41611 41612 41613 41614 41615 41616 41617 41618 41619 41620
φ(n) 41610 20400 23040 20806 26880 13056 41616 20808 27744 16640
n 41621 41622 41623 41624 41625 41626 41627 41628 41629 41630
φ(n) 41620 11880 41128 18480 21600 19200 41626 13872 33696 15840
n 41631 41632 41633 41634 41635 41636 41637 41638 41639 41640
φ(n) 27752 20800 37440 13824 30240 17832 27756 20520 38424 11072
n 41641 41642 41643 41644 41645 41646 41647 41648 41649 41650
φ(n) 41640 20332 23760 20048 33312 12600 41646 19584 27764 13440
n 41651 41652 41653 41654 41655 41656 41657 41658 41659 41660
φ(n) 41650 12672 39820 20416 22208 20160 32400 13520 41658 16656
n 41661 41662 41663 41664 41665 41666 41667 41668 41669 41670
φ(n) 27756 20232 40920 11520 30720 20500 24192 18920 41668 11088
n 41671 41672 41673 41674 41675 41676 41677 41678 41679 41680
φ(n) 35712 20832 26768 20460 33320 13200 41020 16416 25200 16640
n 41681 41682 41683 41684 41685 41686 41687 41688 41689 41690
φ(n) 41680 13892 41040 19584 19008 19728 41686 13824 40756 15120
n 41691 41692 41693 41694 41695 41696 41697 41698 41699 41700
φ(n) 25632 17856 41280 13896 32160 20832 26880 20848 33264 11040
n 41701 41702 41703 41704 41705 41706 41707 41708 41709 41710
φ(n) 35520 20104 27800 19200 31536 11880 41296 20852 27804 16128
n 41711 41712 41713 41714 41715 41716 41717 41718 41719 41720
φ(n) 40872 12480 34800 20856 22032 20856 38496 13056 41718 14208
n 41721 41722 41723 41724 41725 41726 41727 41728 41729 41730
φ(n) 27812 19932 37920 12960 33360 20160 23832 20736 41728 10176
n 41731 41732 41733 41734 41735 41736 41737 41738 41739 41740
φ(n) 40264 20864 27816 16200 31360 13248 41736 20320 27824 16688
n 41741 41742 41743 41744 41745 41746 41747 41748 41749 41750
φ(n) 34848 13896 36504 20864 19360 20872 41256 11760 41164 16600
n 41751 41752 41753 41754 41755 41756 41757 41758 41759 41760
φ(n) 27828 19584 40740 13916 28608 17280 26880 20878 41758 10752
n 41761 41762 41763 41764 41765 41766 41767 41768 41769 41770
φ(n) 41760 16848 27840 20384 33408 13920 37960 19888 20736 16704
n 41771 41772 41773 41774 41775 41776 41777 41778 41779 41780
φ(n) 41770 13688 40608 20886 22240 17856 41776 12600 40720 16704
n 41781 41782 41783 41784 41785 41786 41787 41788 41789 41790
φ(n) 26352 19272 34776 13920 32640 19648 27852 20160 36400 9504
n 41791 41792 41793 41794 41795 41796 41797 41798 41799 41800
φ(n) 39468 20864 27860 20896 30816 13608 35784 20898 27864 14400
n 41801 41802 41803 41804 41805 41806 41807 41808 41809 41810
φ(n) 41800 13932 39328 17904 22272 20902 41280 12672 41808 16128
n 41811 41812 41813 41814 41815 41816 41817 41818 41819 41820
φ(n) 21600 20904 41812 13200 33448 20904 27248 17136 37800 10240
n 41821 41822 41823 41824 41825 41826 41827 41828 41829 41830
φ(n) 38592 19000 27864 20896 28560 13940 41400 20912 27360 16192
n 41831 41832 41833 41834 41835 41836 41837 41838 41839 41840
φ(n) 41064 11808 38020 19296 22304 20916 37312 13176 34776 16704
n 41841 41842 41843 41844 41845 41846 41847 41848 41849 41850
φ(n) 27888 20920 41842 12640 33472 17640 24192 20920 41848 10800
n 41851 41852 41853 41854 41855 41856 41857 41858 41859 41860
φ(n) 41850 20924 23904 19680 30400 13824 39636 20928 27900 12672
n 41861 41862 41863 41864 41865 41866 41867 41868 41869 41870
φ(n) 40800 13952 41862 20928 22320 18920 35880 13944 41440 16224
n 41871 41872 41873 41874 41875 41876 41877 41878 41879 41880
φ(n) 26240 20928 38640 11952 33000 19152 24840 20938 41878 11136
n 41881 41882 41883 41884 41885 41886 41887 41888 41889 41890
φ(n) 34560 20412 26664 20304 33504 12816 41886 15360 27924 16240
n 41891 41892 41893 41894 41895 41896 41897 41898 41899 41900
φ(n) 41472 13960 41892 20946 18144 20944 41896 13964 35040 16720
n 41901 41902 41903 41904 41905 41906 41907 41908 41909 41910
φ(n) 27932 17280 41902 13824 30464 20020 27360 20952 35916 10080
n 41911 41912 41913 41914 41915 41916 41917 41918 41919 41920
φ(n) 41910 18720 27936 19836 32800 11952 41500 20958 27456 16640
n 41921 41922 41923 41924 41925 41926 41927 41928 41929 41930
φ(n) 36720 13056 34944 20424 20160 20962 41926 13968 40084 14352
n 41931 41932 41933 41934 41935 41936 41937 41938 41939 41940
φ(n) 27936 19040 39708 13440 33544 20960 23952 19344 39456 11136
n 41941 41942 41943 41944 41945 41946 41947 41948 41949 41950
φ(n) 41940 20592 24000 17808 33552 13980 41946 20972 27144 16760
n 41951 41952 41953 41954 41955 41956 41957 41958 41959 41960
φ(n) 33120 12672 41952 19060 22368 19712 41956 11664 41958 16768
n 41961 41962 41963 41964 41965 41966 41967 41968 41969 41970
φ(n) 27440 20980 40488 12864 25920 20982 27972 20160 41968 11184
n 41971 41972 41973 41974 41975 41976 41977 41978 41979 41980
φ(n) 38916 17976 26304 20280 31680 12480 38736 20700 23976 16784
n 41981 41982 41983 41984 41985 41986 41987 41988 41989 41990
φ(n) 41980 13992 41982 20480 22320 17988 38060 13992 41580 13824
n 41991 41992 41993 41994 41995 41996 41997 41998 41999 42000
φ(n) 27992 20160 35952 13992 32544 20996 27996 18040 41998 9600

J.P. Martin-Flatin