]> Euler's Totient Function for n = 40001..41000

Euler's Totient Function for n = 40001..41000


Note: This page uses MathML. To view it properly, you need a MathML-enabled browser. You may also have to install some fonts.


Euler's totient function (also known as the "phi function") counts the number of natural integers less than n that are coprime to n. It is very useful in number theory, e.g. to compute the number of primitive roots modulo a prime n. For more information, see:

The values presented below were computed in 2015 using a Python program.

n 40001 40002 40003 40004 40005 40006 40007 40008 40009 40010
φ(n) 34560 12992 39528 19584 18144 19680 36360 13328 40008 16000
n 40011 40012 40013 40014 40015 40016 40017 40018 40019 40020
φ(n) 26672 17136 40012 11664 31200 19200 26676 16960 34296 9856
n 40021 40022 40023 40024 40025 40026 40027 40028 40029 40030
φ(n) 38700 20010 26676 20008 32000 11424 36936 20012 24240 16008
n 40031 40032 40033 40034 40035 40036 40037 40038 40039 40040
φ(n) 40030 13248 31752 19440 19968 20016 40036 13344 40038 11520
n 40041 40042 40043 40044 40045 40046 40047 40048 40049 40050
φ(n) 26676 20020 38280 12880 32032 20022 22872 20016 38640 10560
n 40051 40052 40053 40054 40055 40056 40057 40058 40059 40060
φ(n) 36300 17280 24336 17160 32040 13344 39040 20028 26700 16016
n 40061 40062 40063 40064 40065 40066 40067 40068 40069 40070
φ(n) 33408 12120 40062 19968 21360 17424 39576 11232 37696 16024
n 40071 40072 40073 40074 40075 40076 40077 40078 40079 40080
φ(n) 24624 20032 36420 13356 27360 19488 25920 19320 36984 10624
n 40081 40082 40083 40084 40085 40086 40087 40088 40089 40090
φ(n) 39664 17136 25800 18200 32064 12480 40086 20040 21648 15120
n 40091 40092 40093 40094 40095 40096 40097 40098 40099 40100
φ(n) 39192 12288 40092 20046 19440 17088 39600 12960 40098 16000
n 40101 40102 40103 40104 40105 40106 40107 40108 40109 40110
φ(n) 26732 20050 32256 13344 29568 18220 25760 19440 37980 9120
n 40111 40112 40113 40114 40115 40116 40117 40118 40119 40120
φ(n) 40110 19008 26736 19380 31360 13368 31200 18504 26040 14848
n 40121 40122 40123 40124 40125 40126 40127 40128 40129 40130
φ(n) 39312 13356 40122 17184 21200 20062 40126 11520 40128 16048
n 40131 40132 40133 40134 40135 40136 40137 40138 40139 40140
φ(n) 21168 19656 39468 13376 30624 19264 25152 16560 35200 10656
n 40141 40142 40143 40144 40145 40146 40147 40148 40149 40150
φ(n) 39712 20070 26760 18432 25920 13380 38016 20072 26748 14400
n 40151 40152 40153 40154 40155 40156 40157 40158 40159 40160
φ(n) 40150 11424 40152 18880 21408 20076 37056 12672 34416 16000
n 40161 40162 40163 40164 40165 40166 40167 40168 40169 40170
φ(n) 24320 19572 40162 13384 30912 16200 26772 20080 40168 9792
n 40171 40172 40173 40174 40175 40176 40177 40178 40179 40180
φ(n) 37536 18040 22944 19656 32120 12960 40176 20088 26216 13440
n 40181 40182 40183 40184 40185 40186 40187 40188 40189 40190
φ(n) 38412 12960 33600 20088 19872 19740 34440 12544 40188 16072
n 40191 40192 40193 40194 40195 40196 40197 40198 40199 40200
φ(n) 26792 19968 40192 10080 32152 18528 26796 19800 39480 10560
n 40201 40202 40203 40204 40205 40206 40207 40208 40209 40210
φ(n) 34452 20100 26784 18216 26880 13400 38880 17184 24720 16080
n 40211 40212 40213 40214 40215 40216 40217 40218 40219 40220
φ(n) 39624 13392 40212 20106 18336 18240 39780 13404 39096 16080
n 40221 40222 40223 40224 40225 40226 40227 40228 40229 40230
φ(n) 25920 14976 36288 13376 32160 20112 22880 19712 34440 10656
n 40231 40232 40233 40234 40235 40236 40237 40238 40239 40240
φ(n) 40230 19504 26820 20116 29664 11472 40236 17400 25152 16064
n 40241 40242 40243 40244 40245 40246 40247 40248 40249 40250
φ(n) 40240 12672 34488 20120 21456 20122 39840 12096 36580 13200
n 40251 40252 40253 40254 40255 40256 40257 40258 40259 40260
φ(n) 26832 19376 40252 13416 31488 18432 22680 20128 39816 9600
n 40261 40262 40263 40264 40265 40266 40267 40268 40269 40270
φ(n) 34992 19600 26840 17232 32208 13416 39600 20132 25920 16104
n 40271 40272 40273 40274 40275 40276 40277 40278 40279 40280
φ(n) 31320 13408 35904 18576 21360 20136 40276 11424 39376 14976
n 40281 40282 40283 40284 40285 40286 40287 40288 40289 40290
φ(n) 25872 18300 40282 13392 27600 20142 24768 20128 40288 9984
n 40291 40292 40293 40294 40295 40296 40297 40298 40299 40300
φ(n) 39312 17256 23760 20146 32232 12672 39556 20148 21600 14400
n 40301 40302 40303 40304 40305 40306 40307 40308 40309 40310
φ(n) 39900 13428 39280 18240 21488 17268 37920 13432 39904 15456
n 40311 40312 40313 40314 40315 40316 40317 40318 40319 40320
φ(n) 26856 20152 31824 13436 29280 20156 26400 19080 38544 9216
n 40321 40322 40323 40324 40325 40326 40327 40328 40329 40330
φ(n) 39600 20160 26880 18944 32240 11040 34524 19880 26880 15552
n 40331 40332 40333 40334 40335 40336 40337 40338 40339 40340
φ(n) 39000 13440 39520 16632 21504 20160 34560 13284 35616 16128
n 40341 40342 40343 40344 40345 40346 40347 40348 40349 40350
φ(n) 21504 19272 40342 13120 32272 20172 26892 15600 39936 10720
n 40351 40352 40353 40354 40355 40356 40357 40358 40359 40360
φ(n) 40350 18432 26900 20176 27648 12528 40356 18976 24440 16128
n 40361 40362 40363 40364 40365 40366 40367 40368 40369 40370
φ(n) 40360 11160 39960 20180 19008 20182 39240 12992 33696 14640
n 40371 40372 40373 40374 40375 40376 40377 40378 40379 40380
φ(n) 26912 20184 39468 13452 28800 17136 26208 18624 39960 10752
n 40381 40382 40383 40384 40385 40386 40387 40388 40389 40390
φ(n) 36700 19800 23040 20160 31360 13104 40386 19272 26924 13824
n 40391 40392 40393 40394 40395 40396 40397 40398 40399 40400
φ(n) 37128 11520 39060 19116 21536 20196 33264 13464 39760 16000
n 40401 40402 40403 40404 40405 40406 40407 40408 40409 40410
φ(n) 26532 20200 36720 10368 32320 19888 26936 20200 38016 10752
n 40411 40412 40413 40414 40415 40416 40417 40418 40419 40420
φ(n) 33000 20204 25488 18260 31552 13440 37296 17316 26892 15456
n 40421 40422 40423 40424 40425 40426 40427 40428 40429 40430
φ(n) 39852 13472 40422 19440 16800 17920 40426 13464 40428 14880
n 40431 40432 40433 40434 40435 40436 40437 40438 40439 40440
φ(n) 26952 16416 40432 12848 32344 18360 26952 20218 33696 10752
n 40441 40442 40443 40444 40445 40446 40447 40448 40449 40450
φ(n) 39312 19872 23040 20220 32352 11448 36760 19968 26496 16160
n 40451 40452 40453 40454 40455 40456 40457 40458 40459 40460
φ(n) 38304 13480 34668 19936 20160 18624 38676 12240 40458 13056
n 40461 40462 40463 40464 40465 40466 40467 40468 40469 40470
φ(n) 26972 20230 39480 13440 32368 20232 22080 19800 33840 10080
n 40471 40472 40473 40474 40475 40476 40477 40478 40479 40480
φ(n) 40470 20232 26964 17052 32360 13488 38080 19656 26520 14080
n 40481 40482 40483 40484 40485 40486 40487 40488 40489 40490
φ(n) 34692 12384 40482 19488 21584 19560 40486 11520 38340 16192
n 40491 40492 40493 40494 40495 40496 40497 40498 40499 40500
φ(n) 24480 19760 40492 12672 25344 20240 26996 20248 40498 10800
n 40501 40502 40503 40504 40505 40506 40507 40508 40509 40510
φ(n) 40000 15720 25784 19680 32400 13104 40506 17280 23112 16200
n 40511 40512 40513 40514 40515 40516 40517 40518 40519 40520
φ(n) 38112 13440 35280 19780 20736 17352 39180 13500 40518 16192
n 40521 40522 40523 40524 40525 40526 40527 40528 40529 40530
φ(n) 24912 20260 34692 12240 32400 19360 25272 18944 40528 9216
n 40531 40532 40533 40534 40535 40536 40537 40538 40539 40540
φ(n) 40530 20264 26448 18696 29040 13488 34740 20268 27024 16208
n 40541 40542 40543 40544 40545 40546 40547 40548 40549 40550
φ(n) 39900 12992 40542 17280 19968 17280 37416 12960 36960 16200
n 40551 40552 40553 40554 40555 40556 40557 40558 40559 40560
φ(n) 23160 19584 40068 13500 32440 20276 24560 17376 40558 9984
n 40561 40562 40563 40564 40565 40566 40567 40568 40569 40570
φ(n) 39652 19072 27036 20280 25920 13520 40096 18400 27044 16224
n 40571 40572 40573 40574 40575 40576 40577 40578 40579 40580
φ(n) 39144 11088 37440 20286 21600 20224 40576 13524 28800 16224
n 40581 40582 40583 40584 40585 40586 40587 40588 40589 40590
φ(n) 26892 19992 40582 12672 32464 15984 26568 19872 39456 9600
n 40591 40592 40593 40594 40595 40596 40597 40598 40599 40600
φ(n) 40590 19488 23184 20296 30976 12672 40596 19864 24912 13440
n 40601 40602 40603 40604 40605 40606 40607 40608 40609 40610
φ(n) 36900 13200 38448 20300 21648 19968 34800 13248 40608 15600
n 40611 40612 40613 40614 40615 40616 40617 40618 40619 40620
φ(n) 27072 16800 38208 11592 32488 20304 27072 19404 40200 10816
n 40621 40622 40623 40624 40625 40626 40627 40628 40629 40630
φ(n) 34776 19224 24600 20304 30000 12960 40626 17400 26096 15232
n 40631 40632 40633 40634 40635 40636 40637 40638 40639 40640
φ(n) 39600 13536 40228 18460 18144 20316 40636 12480 40638 16128
n 40641 40642 40643 40644 40645 40646 40647 40648 40649 40650
φ(n) 23760 17412 40128 13536 29520 20322 25472 20320 34836 10800
n 40651 40652 40653 40654 40655 40656 40657 40658 40659 40660
φ(n) 36192 20324 27096 20326 31648 10560 40176 19600 27104 15264
n 40661 40662 40663 40664 40665 40666 40667 40668 40669 40670
φ(n) 40032 13500 33696 16896 21680 20332 36960 13552 39996 13776
n 40671 40672 40673 40674 40675 40676 40677 40678 40679 40680
φ(n) 27108 19200 40128 13556 32520 20336 21312 18060 38520 10752
n 40681 40682 40683 40684 40685 40686 40687 40688 40689 40690
φ(n) 38272 20340 26600 17424 31824 13560 36960 20336 24480 14976
n 40691 40692 40693 40694 40695 40696 40697 40698 40699 40700
φ(n) 34872 13560 40692 20346 21696 20344 40696 10368 40698 14400
n 40701 40702 40703 40704 40705 40706 40707 40708 40709 40710
φ(n) 27132 19872 36000 13312 27888 20352 27132 20352 40708 10208
n 40711 40712 40713 40714 40715 40716 40717 40718 40719 40720
φ(n) 37000 17424 26400 20356 30592 12096 38556 20358 23184 16256
n 40721 40722 40723 40724 40725 40726 40727 40728 40729 40730
φ(n) 39732 12320 40320 20360 21600 17448 40296 13568 37440 16288
n 40731 40732 40733 40734 40735 40736 40737 40738 40739 40740
φ(n) 27152 19136 30360 12960 32584 19008 26352 20368 40738 9216
n 40741 40742 40743 40744 40745 40746 40747 40748 40749 40750
φ(n) 40300 18792 27108 18480 31360 13580 34920 19920 25024 16200
n 40751 40752 40753 40754 40755 40756 40757 40758 40759 40760
φ(n) 40750 13536 40180 16800 17280 19448 39936 13584 40758 16288
n 40761 40762 40763 40764 40765 40766 40767 40768 40769 40770
φ(n) 23256 20064 40762 13104 31440 17280 26712 16128 40020 10800
n 40771 40772 40773 40774 40775 40776 40777 40778 40779 40780
φ(n) 40770 20384 27180 18144 27840 13584 36960 20388 25872 16304
n 40781 40782 40783 40784 40785 40786 40787 40788 40789 40790
φ(n) 37632 11640 38368 20384 21744 20392 40786 12240 34956 16312
n 40791 40792 40793 40794 40795 40796 40797 40798 40799 40800
φ(n) 27192 20392 38304 12528 31680 16560 27180 20398 37080 10240
n 40801 40802 40803 40804 40805 40806 40807 40808 40809 40810
φ(n) 40800 19492 22176 20200 32640 13596 36288 20400 26640 12480
n 40811 40812 40813 40814 40815 40816 40817 40818 40819 40820
φ(n) 39672 12816 40812 20406 21744 20400 32928 13604 40818 14976
n 40821 40822 40823 40824 40825 40826 40827 40828 40829 40830
φ(n) 24720 20410 40822 11664 30800 20128 26280 19952 40828 10880
n 40831 40832 40833 40834 40835 40836 40837 40838 40839 40840
φ(n) 33048 17920 25056 19200 32664 13120 40320 17496 27224 16320
n 40841 40842 40843 40844 40845 40846 40847 40848 40849 40850
φ(n) 40840 13608 35880 20420 18624 18840 40846 12672 40848 15120
n 40851 40852 40853 40854 40855 40856 40857 40858 40859 40860
φ(n) 25344 17496 40852 12360 32680 20424 27236 19740 32256 10848
n 40861 40862 40863 40864 40865 40866 40867 40868 40869 40870
φ(n) 39424 20430 26624 20416 29680 11592 40866 19200 25704 15840
n 40871 40872 40873 40874 40875 40876 40877 40878 40879 40880
φ(n) 39072 12480 35028 20140 21600 18560 39840 13608 40878 13824
n 40881 40882 40883 40884 40885 40886 40887 40888 40889 40890
φ(n) 27252 20440 40882 13624 27648 20442 20880 19296 39540 10304
n 40891 40892 40893 40894 40895 40896 40897 40898 40899 40900
φ(n) 40392 20444 26544 16632 32712 13440 40896 17160 27264 16320
n 40901 40902 40903 40904 40905 40906 40907 40908 40909 40910
φ(n) 35052 12800 40902 20448 21600 20160 38736 11664 37180 16360
n 40911 40912 40913 40914 40915 40916 40917 40918 40919 40920
φ(n) 25152 20448 40500 13632 27888 19968 26048 19920 36736 9600
n 40921 40922 40923 40924 40925 40926 40927 40928 40929 40930
φ(n) 40500 16848 27276 18864 32720 12888 40926 20448 23376 16368
n 40931 40932 40933 40934 40935 40936 40937 40938 40939 40940
φ(n) 36600 13608 40932 20160 21824 16128 36432 13644 40938 15488
n 40941 40942 40943 40944 40945 40946 40947 40948 40949 40950
φ(n) 27288 18600 35088 13632 30960 20068 27296 19712 40948 8640
n 40951 40952 40953 40954 40955 40956 40957 40958 40959 40960
φ(n) 39600 20472 23040 20476 32760 13648 35100 20478 25920 16384
n 40961 40962 40963 40964 40965 40966 40967 40968 40969 40970
φ(n) 40960 13652 35904 15120 21840 20482 40320 13632 40144 15360
n 40971 40972 40973 40974 40975 40976 40977 40978 40979 40980
φ(n) 23400 20484 40972 13656 29600 18816 26208 17556 39984 10912
n 40981 40982 40983 40984 40985 40986 40987 40988 40989 40990
φ(n) 40492 19800 25848 19872 28080 11880 38560 20492 25200 16392
n 40991 40992 40993 40994 40995 40996 40997 40998 40999 41000
φ(n) 40584 11520 40992 20196 21840 19872 37260 13664 35136 16000

J.P. Martin-Flatin