]> Euler's Totient Function for n = 29001..30000

Euler's Totient Function for n = 29001..30000


Note: This page uses MathML. To view it properly, you need a MathML-enabled browser. You may also have to install some fonts.


Euler's totient function (also known as the "phi function") counts the number of natural integers less than n that are coprime to n. It is very useful in number theory, e.g. to compute the number of primitive roots modulo a prime n. For more information, see:

The values presented below were computed in 2015 using a Python program.

n 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010
φ(n) 16560 13632 25344 9664 23200 14502 17520 12096 29008 7728
n 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020
φ(n) 28512 14504 18288 14256 19872 8640 29016 13180 18176 11600
n 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030
φ(n) 29020 8280 29022 14496 15120 13860 29026 9280 20160 11608
n 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040
φ(n) 19352 13680 29032 9672 23224 11520 19356 14518 28560 7040
n 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050
φ(n) 28672 13392 16560 14144 22464 9384 28080 14520 18480 9840
n 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060
φ(n) 24840 9648 27328 14256 14208 14464 24864 9296 29058 11616
n 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070
φ(n) 19368 13200 29062 8256 23248 14532 19376 13104 28320 6912
n 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080
φ(n) 24912 13728 17600 14536 23240 9688 29076 11880 19332 11616
n 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090
φ(n) 26832 9360 28728 13200 13248 14542 25984 9600 27540 11632
n 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100
φ(n) 19392 12456 28428 8928 20240 14544 18720 14548 24936 7680
n 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110
φ(n) 29100 14550 19008 13568 23280 7560 26856 13752 18720 11200
n 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120
φ(n) 28392 9696 24948 14556 15504 14000 26460 9240 28296 9216
n 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130
φ(n) 18240 14560 29122 9696 23200 14562 15552 13200 29128 7760
n 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140
φ(n) 29130 14564 17712 12480 23304 9696 29136 13696 17640 11040
n 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150
φ(n) 23760 9708 28800 14568 14784 12528 29146 8304 28764 10400
n 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160
φ(n) 18720 14560 29152 9408 18816 14112 19436 14280 26904 7776
n 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170
φ(n) 26400 12492 19440 13904 22032 9720 29166 14576 16632 11664
n 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180
φ(n) 28200 7680 29172 14056 15520 12480 28836 9720 29178 11664
n 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190
φ(n) 19040 14590 22680 9216 21504 14592 18216 14592 27200 6624
n 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200
φ(n) 29190 14080 18864 13260 23352 9720 24192 13464 19464 11520
n 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210
φ(n) 29200 9360 26208 12432 13920 13728 29206 9728 29208 11088
n 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220
φ(n) 15264 14256 28860 9720 23368 13120 19476 12516 28680 7776
n 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230
φ(n) 29220 13824 18240 13440 19920 9740 26560 14612 19484 11232
n 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240
φ(n) 29230 8064 26400 14260 15584 14616 26832 8840 25056 10752
n 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250
φ(n) 18468 14620 29242 9744 23392 12528 19496 14592 26580 7200
n 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260
φ(n) 29250 14280 16632 14626 23400 9152 27520 14628 19500 8640
n 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270
φ(n) 28224 9752 27000 13920 15600 14632 24192 9720 29268 11704
n 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280
φ(n) 17720 14632 28800 7680 23400 13488 19512 14638 26136 7680
n 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290
φ(n) 24288 13310 18984 14640 23424 9756 29286 12528 18000 11200
n 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300
φ(n) 27552 9760 26620 14400 12960 14640 29296 9216 28864 11680
n 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310
φ(n) 19532 11088 29302 8640 23440 14652 19536 13760 24336 7808
n 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320
φ(n) 29310 14592 19536 14656 19200 8352 27756 14416 18816 11712
n 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330
φ(n) 28944 9720 24360 14660 14080 12600 29326 8832 28980 10032
n 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340
φ(n) 19548 14664 29332 9776 23464 13824 15120 14668 29338 7776
n 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350
φ(n) 25920 13792 19560 12480 23472 9504 29346 12320 19548 11720
n 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360
φ(n) 25116 9776 29008 13536 14688 14240 28380 8352 24960 11712
n 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370
φ(n) 19572 14352 29362 9784 20112 14682 18000 14680 28644 7040
n 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380
φ(n) 28072 12576 19580 13896 23000 9216 28336 14256 16776 10752
n 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390
φ(n) 26700 9512 29382 14688 15648 12588 29386 9360 29388 11752
n 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400
φ(n) 19200 13280 20736 9240 23512 14696 19040 14698 29398 6720
n 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410
φ(n) 29400 14400 17820 14700 23520 8736 25200 14688 19604 11008
n 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420
φ(n) 29410 9072 28908 11400 14976 14704 28116 9804 25920 11760
n 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430
φ(n) 16776 14352 29422 9792 21200 14712 18432 12600 29428 7776
n 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440
φ(n) 27864 13536 19620 14716 19488 8880 29436 14320 19620 11264
n 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450
φ(n) 28884 8400 29442 13824 14400 14722 26760 9792 25200 10800
n 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460
φ(n) 19632 14256 29452 9816 22848 12576 19620 12240 29040 7840
n 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470
φ(n) 27712 14730 15840 14112 22960 9816 29016 14352 16560 10080
n 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480
φ(n) 27192 9792 29472 14736 15600 14736 25260 9248 28720 10560
n 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490
φ(n) 18960 14740 29482 7776 23584 14080 19656 13824 28656 7856
n 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500
φ(n) 22920 14400 18816 14746 22144 9824 27216 12348 19664 11600
n 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510
φ(n) 29500 8880 29160 14720 13440 14752 27936 9832 28204 10848
n 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520
φ(n) 19656 11520 26820 9836 23608 14352 19676 14758 25296 7680
n 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530
φ(n) 28912 14224 18144 13200 23600 7776 29526 14760 18432 11808
n 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540
φ(n) 29530 9328 25308 14766 14240 13440 29536 9828 29160 10080
n 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550
φ(n) 19152 14770 28560 9840 22320 12480 16632 14432 27264 7840
n 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560
φ(n) 28504 14768 19700 12660 22528 9840 26860 14778 19256 11808
n 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570
φ(n) 24480 9072 26496 13968 15552 14782 29566 7680 29568 11824
n 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580
φ(n) 19712 14784 29572 9360 18720 14784 19716 14124 26880 7168
n 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590
φ(n) 29580 12672 18576 14448 23040 9860 29586 13632 16896 10720
n 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600
φ(n) 29232 9792 29200 14796 15776 12600 27840 9864 29598 11520
n 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610
φ(n) 15840 13680 25368 9864 22800 14560 19320 14800 28560 6624
n 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620
φ(n) 29610 13440 19740 12672 23688 9856 25380 14500 19728 11840
n 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630
φ(n) 28044 9872 26920 12144 15600 14812 26208 9864 29628 11848
n 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640
φ(n) 15744 14784 29632 8960 23704 14280 19008 12096 29256 6912
n 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650
φ(n) 29640 14820 19200 14820 18480 9720 28336 13824 19764 11840
n 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660
φ(n) 29304 8448 27360 14826 15792 13440 28980 9884 23976 11856
n 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670
φ(n) 19772 14830 29662 9792 22272 11664 16800 14832 29668 7392
n 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680
φ(n) 29670 14832 16848 14400 23720 9888 29116 12600 18240 9984
n 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690
φ(n) 29172 9216 29682 14400 15824 14842 25440 9888 26980 11872
n 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700
φ(n) 19788 13680 28380 8400 23752 14336 18720 14340 27936 7200
n 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710
φ(n) 25452 14850 19800 14352 21888 9900 29160 12720 19800 11880
n 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720
φ(n) 25920 9888 28980 14596 13536 12672 29716 9072 29344 11872
n 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730
φ(n) 19812 11520 29722 9904 22400 14608 19764 14848 24480 7920
n 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740
φ(n) 27432 14864 16640 14866 22464 8352 29380 14868 18920 11888
n 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750
φ(n) 29740 9912 25452 12480 15840 14628 29400 9504 29260 9600
n 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760
φ(n) 19320 14872 29752 9072 21600 14448 15552 14878 29758 7680
n 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770
φ(n) 29760 14212 19836 12744 23808 8800 27744 14640 19844 10944
n 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780
φ(n) 25512 9912 28188 14886 15840 14880 27060 8496 29376 11904
n 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790
φ(n) 19836 14890 26208 9216 19008 14560 19856 13520 29788 7920
n 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800
φ(n) 28830 12096 19860 14896 23200 9120 29356 14536 15120 11840
n 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810
φ(n) 28032 9932 29802 14900 15888 12768 29040 9504 27504 10800
n 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820
φ(n) 18792 14336 25548 9936 23232 14904 19872 14016 29818 6720
n 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830
φ(n) 27100 12960 19880 14848 23840 9936 25560 14912 19440 11232
n 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840
φ(n) 28512 8960 29832 12780 13824 14916 29836 9944 29224 11904
n 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850
φ(n) 16464 14532 27120 9936 23184 14922 19896 11520 28260 7920
n 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860
φ(n) 29850 14016 19080 12760 20448 9920 29376 14928 19296 11936
n 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870
φ(n) 27552 8424 29862 14928 14400 14688 29866 9360 24000 11424
n 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880
φ(n) 19908 14928 29872 9168 23800 11520 19008 14938 29878 7872
n 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890
φ(n) 29880 14652 17064 14400 23184 9344 23760 14912 19440 10080
n 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900
φ(n) 29400 9568 29548 14946 15936 14400 25620 9000 28840 10560
n 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910
φ(n) 19932 14950 28128 8448 23920 14148 19932 14952 27180 7968
n 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920
φ(n) 25632 14952 18096 14956 23040 9936 29916 12816 19944 10240
n 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930
φ(n) 29920 9972 28600 14960 12960 13800 29926 9408 29756 11520
n 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940
φ(n) 18120 12816 29088 9972 23944 14960 18752 14968 23184 7968
n 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950
φ(n) 29484 13600 19944 14112 23296 7920 29946 14972 19536 11960
n 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960
φ(n) 29400 9216 23280 14080 15968 14976 28896 9984 29958 10176
n 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970
φ(n) 19968 14700 28044 9040 22080 14982 17112 14976 28644 7776
n 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980
φ(n) 26880 14616 19584 12840 21600 9984 28980 13824 19980 11984
n 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990
φ(n) 25692 9432 29982 14976 15984 12880 29640 8064 29988 11992
n 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000
φ(n) 18432 14256 29568 9996 20544 14996 18000 14664 29640 8000

J.P. Martin-Flatin