]> Euler's Totient Function for n = 19001..20000

Euler's Totient Function for n = 19001..20000


Note: This page uses MathML. To view it properly, you need a MathML-enabled browser. You may also have to install some fonts.


Euler's totient function (also known as the "phi function") counts the number of natural integers less than n that are coprime to n. It is very useful in number theory, e.g. to compute the number of primitive roots modulo a prime n. For more information, see:

The values presented below were computed in 2015 using a Python program.

n 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010
φ(n) 19000 6332 18360 9500 8640 8064 18696 5760 19008 7600
n 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020
φ(n) 12672 8064 19012 6336 15208 9504 12672 9216 12960 5056
n 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030
φ(n) 18172 9510 11904 8960 15200 5400 18616 9240 12684 6880
n 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040
φ(n) 19030 5760 16308 9180 9936 9516 19036 5976 18720 6144
n 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050
φ(n) 11520 9520 18768 6072 14016 9328 10872 9520 18564 5040
n 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060
φ(n) 19050 8640 12096 8160 14688 6336 16704 8784 12704 7616
n 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070
φ(n) 16296 6336 17320 9528 9600 9532 18216 5424 19068 7624
n 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080
φ(n) 11664 9472 19072 5440 12960 9000 12716 9538 19078 4992
n 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090
φ(n) 19080 7728 12720 8784 13840 6360 19086 9536 10800 7216
n 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100
φ(n) 17952 6048 18720 9546 9504 7200 17472 6360 18760 7600
n 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110
φ(n) 12732 9550 16368 6336 15280 9280 11520 8960 18816 4032
n 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120
φ(n) 18424 9552 12144 9036 15288 6264 16380 8580 12744 7616
n 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130
φ(n) 19120 6372 17640 8184 9600 9360 18480 6368 16560 7648
n 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140
φ(n) 10920 9564 17784 6372 14784 8448 12756 8196 19138 4480
n 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150
φ(n) 19140 8992 12744 9568 13104 6380 18640 9572 11760 7640
n 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160
φ(n) 17400 5184 18868 9360 10208 9576 19156 6120 14784 7648
n 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170
φ(n) 12768 7920 19162 6384 15328 7992 12776 9568 18480 5040
n 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180
φ(n) 18144 9584 9840 9586 13920 5888 18900 9324 12780 6528
n 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190
φ(n) 19180 6072 19182 8640 10224 9360 16440 5760 18540 7200
n 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200
φ(n) 12792 9592 18048 5472 13920 9596 12636 9240 18864 5120
n 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210
φ(n) 15120 9600 12384 9600 14608 5760 19206 8232 12096 7168
n 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220
φ(n) 19210 6400 19212 8856 8640 9600 17460 6404 19218 7440
n 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230
φ(n) 12432 8232 18768 6336 15360 9612 10752 7920 15840 5120
n 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240
φ(n) 19230 9600 12816 9396 15384 5472 19236 9618 11440 6912
n 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250
φ(n) 18900 6408 16488 9024 10256 9622 18216 6400 19248 6000
n 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260
φ(n) 11880 9624 17760 6416 15400 9184 10920 9628 19258 5088
n 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270
φ(n) 16320 9630 12840 8064 15408 5616 19266 9632 12840 7360
n 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280
φ(n) 16512 5760 19272 9196 10240 9360 18720 5184 17784 7680
n 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290
φ(n) 12852 9300 17520 6424 12096 9642 12852 9640 19288 5136
n 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300
φ(n) 19000 7488 12528 8760 14464 6336 18436 9648 11016 7680
n 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310
φ(n) 19300 6432 19008 9072 8640 8232 18816 6432 19308 7720
n 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320
φ(n) 12480 8960 15840 6048 15448 8760 12512 8904 19318 4224
n 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330
φ(n) 19182 9660 12096 9660 15440 6440 15000 9600 12096 7728
n 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340
φ(n) 17832 6408 19332 8280 10304 9664 18960 5840 19024 7728
n 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350
φ(n) 11016 9144 17864 5760 14976 9088 12896 8280 17580 5040
n 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360
φ(n) 18792 9280 12900 9676 13104 6448 17856 9678 12852 7040
n 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370
φ(n) 18324 5520 17952 9384 10320 9240 19080 6432 16596 7104
n 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380
φ(n) 11720 9296 19372 6456 15000 8256 12912 9688 19378 4608
n 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390
φ(n) 19380 8800 10080 9688 15504 6444 19386 9360 12320 6624
n 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400
φ(n) 19390 6400 16800 9696 10320 8928 15552 6240 18360 7680
n 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410
φ(n) 12432 9504 19402 5040 15520 9360 12936 9696 17904 5168
n 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420
φ(n) 16008 9240 12924 9120 14080 6464 19416 7776 12944 7760
n 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430
φ(n) 19420 5904 19422 9696 8640 8820 19426 6472 19428 7392
n 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440
φ(n) 12096 8304 19432 6240 13728 9408 10800 9718 16656 5184
n 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450
φ(n) 19440 9720 12960 9720 15552 5544 19446 7680 12960 7760
n 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460
φ(n) 19032 6480 16632 9520 10368 9216 19456 6072 16800 6624
n 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470
φ(n) 11952 9432 19462 6480 14592 9732 11016 9360 19468 4640
n 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480
φ(n) 19470 9728 12980 7632 14400 6480 19476 9738 12600 7776
n 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490
φ(n) 14520 6080 19482 9740 10368 9742 17976 5376 19488 7792
n 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500
φ(n) 12672 8840 19200 6156 13344 9744 12672 9748 17280 4800
n 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510
φ(n) 19500 8316 11760 9152 15088 6500 19506 9752 11136 7800
n 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520
φ(n) 19224 6480 16848 8860 10400 7680 18816 6504 19240 7680
n 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530
φ(n) 12960 9492 16728 6504 14000 9000 12408 9760 19140 4320
n 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540
φ(n) 19530 9216 12224 9766 15624 5760 16740 9768 11952 7808
n 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550
φ(n) 19540 6512 19542 8352 10416 9408 17760 6480 19264 7040
n 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560
φ(n) 10584 8832 19552 6516 15640 9776 12480 7560 19558 5184
n 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570
φ(n) 18900 9780 13040 9504 12096 6516 18400 9776 11840 7344
n 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580
φ(n) 19570 5568 18216 9786 10080 9784 19576 6000 16776 7040
n 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590
φ(n) 12720 9790 19582 6144 15664 8388 13056 9512 18540 5216
n 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600
φ(n) 16320 9360 11160 9600 15672 6160 19596 9520 12696 6720
n 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610
φ(n) 18432 5940 19602 8736 10448 9802 16800 6048 19608 7488
n 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620
φ(n) 13068 9804 17820 5592 15688 9792 12048 9216 18744 5184
n 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630
φ(n) 16812 9810 12600 8880 15600 6540 18576 8400 13068 7200
n 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640
φ(n) 19272 6528 18928 9816 7680 9816 19296 6540 19120 7840
n 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650
φ(n) 13092 7920 18120 6544 15712 8280 12528 9792 16800 5200
n 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660
φ(n) 19152 9248 13100 9480 15720 5184 17860 9828 13104 7856
n 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670
φ(n) 19660 6272 16536 9824 9504 9832 19320 5920 16896 6720
n 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680
φ(n) 12792 9832 19380 6552 15720 9836 11232 9838 17880 5120
n 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690
φ(n) 19680 9072 13122 7776 15120 6144 19686 9328 13124 7120
n 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700
φ(n) 16128 6552 19228 9576 9600 9840 19696 5544 19698 7840
n 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710
φ(n) 11880 9850 17280 6560 13488 9628 13136 9072 19708 5184
n 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720
φ(n) 18832 7680 13140 9856 15768 6240 19716 9858 11232 7168
n 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730
φ(n) 17280 6192 17820 9860 10480 8448 19726 6528 19440 7888
n 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740
φ(n) 13152 9864 16908 5280 15784 9864 12096 9660 19738 4416
n 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750
φ(n) 18684 9870 13160 9856 14320 6576 15120 9872 12656 7800
n 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760
φ(n) 19750 6576 19752 7872 10512 8960 18876 6336 19758 6912
n 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770
φ(n) 11280 9600 19762 6480 15312 9882 11960 8448 19344 5264
n 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780
φ(n) 18592 9884 12168 9886 13440 6528 19776 8400 12456 7392
n 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790
φ(n) 19500 5616 19440 9888 10544 9120 19320 6144 15360 7912
n 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800
φ(n) 13176 9888 19792 6596 15264 8400 13196 9360 18264 4800
n 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810
φ(n) 19800 9900 10560 9900 14848 6600 19096 9888 12600 6768
n 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820
φ(n) 18000 6048 19812 9906 10560 9904 15984 6588 19818 7920
n 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830
φ(n) 13212 8320 19320 5568 14400 9460 13212 9912 19500 5280
n 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840
φ(n) 16992 9504 12000 9660 15864 6048 19516 7776 12416 7680
n 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850
φ(n) 19840 6612 19842 8800 9072 9922 19536 6608 18964 7920
n 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860
φ(n) 12192 8496 19852 6612 13680 9216 13236 9928 17016 5280
n 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870
φ(n) 19860 9930 13236 9120 15232 5040 19866 9932 12816 7944
n 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880
φ(n) 19200 6336 15936 9396 10400 9936 16560 6624 19584 6720
n 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890
φ(n) 12972 9940 19488 6624 15360 9720 11352 8960 19888 4608
n 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900
φ(n) 19890 9944 12528 8232 15136 6624 19600 9948 11880 7920
n 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910
φ(n) 17052 6360 18360 9920 10608 9648 18720 5616 19404 7200
n 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920
φ(n) 13272 9360 19912 6636 13632 9168 13272 9504 19918 5248
n 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930
φ(n) 18100 8532 12768 9344 15920 6480 19926 9568 10368 7968
n 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940
φ(n) 18864 6000 19260 9966 10608 8448 19936 6644 19656 7968
n 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950
φ(n) 11968 9048 15120 6624 15952 9972 12960 9972 19948 4320
n 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960
φ(n) 19600 9408 13284 9060 14688 6648 17100 9376 13304 7968
n 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970
φ(n) 19960 6648 19962 7920 9680 9768 19440 6144 18900 7984
n 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980
φ(n) 11376 9984 19972 6656 14720 9040 13316 8556 19978 5184
n 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990
φ(n) 17472 9792 13320 9984 13680 6660 17160 9432 13320 7992
n 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000
φ(n) 19990 5376 19992 9216 10080 9996 19996 6000 17136 8000

J.P. Martin-Flatin