]> Euler's Totient Function for n = 18001..19000

Euler's Totient Function for n = 18001..19000


Note: This page uses MathML. To view it properly, you need a MathML-enabled browser. You may also have to install some fonts.


Euler's totient function (also known as the "phi function") counts the number of natural integers less than n that are coprime to n. It is very useful in number theory, e.g. to compute the number of primitive roots modulo a prime n. For more information, see:

The values presented below were computed in 2015 using a Python program.

n 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010
φ(n) 17572 9000 11264 7704 13248 6000 16360 9000 11088 7200
n 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020
φ(n) 14760 5616 18012 9006 9600 8992 17556 4320 17496 6656
n 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030
φ(n) 12012 9010 17688 6000 12240 9012 12012 9012 16280 4800
n 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040
φ(n) 15552 7392 12020 8820 14424 5976 16960 8680 10296 6400
n 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050
φ(n) 18040 5760 18042 8304 9600 7728 18046 5888 18048 6840
n 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060
φ(n) 10920 9024 15468 5568 13728 8640 11088 9028 18058 4032
n 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070
φ(n) 18060 8200 11988 9024 14448 6020 14784 9032 11376 6624
n 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080
φ(n) 16992 6000 15600 7740 9600 9036 18076 5720 17800 7168
n 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090
φ(n) 10080 9040 16536 5440 14464 9042 12056 6912 18088 4752
n 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100
φ(n) 17784 9044 11664 8856 11040 5376 18096 9048 12060 7200
n 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110
φ(n) 17292 5160 17640 8640 8960 8220 17136 6024 14256 7240
n 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120
φ(n) 12072 9024 17748 6036 14488 7752 10800 9058 18118 4800
n 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130
φ(n) 18120 7680 10344 8624 14000 5616 18126 8160 12084 6048
n 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140
φ(n) 18130 6040 18132 9066 8640 9064 15540 6044 15360 7248
n 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150
φ(n) 12092 8832 18142 5184 13680 8820 11528 8352 18148 4400
n 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160
φ(n) 15552 9072 12096 8736 14520 5632 17820 7776 12104 7232
n 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170
φ(n) 15120 6048 17680 8568 8256 8760 17640 6048 18168 6864
n 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180
φ(n) 12096 6960 17088 5568 14520 8960 11808 8880 15288 4800
n 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190
φ(n) 18180 9090 10080 9088 14544 5184 16776 9092 11592 6784
n 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200
φ(n) 18190 6048 14784 8260 9696 9096 17580 6048 18198 5760
n 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210
φ(n) 12132 8604 17928 5760 13200 9102 9792 9088 17940 4848
n 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220
φ(n) 18210 8736 11184 7800 14568 5280 18216 9108 12144 7280
n 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230
φ(n) 14688 6072 18222 8448 9720 8400 16560 5040 18228 7288
n 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240
φ(n) 11832 8736 18232 6072 12480 8832 12156 8280 15840 4608
n 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250
φ(n) 16128 7812 12156 9120 14080 6080 17920 9120 9360 7200
n 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260
φ(n) 18250 5616 18252 9126 9728 7776 18256 5696 16740 6560
n 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270
φ(n) 12168 8712 15648 6080 13440 9132 12176 9132 18268 4032
n 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280
φ(n) 16500 9120 12180 9136 13440 6088 15624 7776 12168 7296
n 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290
φ(n) 18000 5520 17848 7824 9152 8880 18286 6048 18288 6960
n 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300
φ(n) 9504 8576 16620 6096 14632 9144 11448 7836 17640 4800
n 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310
φ(n) 18300 9150 12200 7680 12528 6048 18306 8712 11456 7320
n 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320
φ(n) 18310 5184 18312 9156 8640 8640 16896 5880 15696 7296
n 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330
φ(n) 11760 9160 18000 6096 14640 6720 11840 8736 18328 4416
n 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340
φ(n) 17512 9164 10368 8976 13824 6080 16660 8944 12224 6240
n 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350
φ(n) 18340 6108 15744 9168 9776 9172 15720 5520 17980 7320
n 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360
φ(n) 12228 8640 18352 4752 14680 8448 11760 8976 16680 4608
n 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370
φ(n) 15120 9180 12240 9180 14688 6120 18366 7680 11232 6640
n 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380
φ(n) 18370 6120 17388 9186 8400 9184 16192 6120 18378 7344
n 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390
φ(n) 11120 7200 17760 6112 14704 8848 12204 9192 15120 4896
n 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400
φ(n) 17992 7920 12260 8640 13536 5184 18396 9198 12264 7040
n 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410
φ(n) 18400 6132 14280 8904 9792 9202 18096 5568 17920 6288
n 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420
φ(n) 10944 9204 18412 5400 14112 9200 10512 9208 18144 4896
n 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430
φ(n) 16848 9000 11616 7728 13200 5904 18426 8640 12284 6912
n 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440
φ(n) 15792 6144 18432 8496 9824 8360 18156 5256 18438 7360
n 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450
φ(n) 12276 9220 18442 5824 11520 8800 10080 9216 17460 4800
n 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460
φ(n) 18450 7896 12300 9226 14760 6144 18456 8380 10512 6720
n 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470
φ(n) 18460 5760 17928 9216 9840 7908 18096 5832 15840 7384
n 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480
φ(n) 11960 9232 14112 6156 14760 8880 12312 9238 17376 3840
n 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490
φ(n) 18480 9240 12000 9240 14784 5616 14904 9240 12324 7224
n 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500
φ(n) 16400 5808 18492 7920 9792 8704 18096 6164 17064 7200
n 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510
φ(n) 10560 8120 18502 6144 14800 8748 11880 7920 18204 4928
n 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520
φ(n) 18232 8448 10560 9256 12144 6168 18516 9016 12344 7392
n 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530
φ(n) 18520 5292 18522 8400 8640 9048 18240 6144 15876 6912
n 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540
φ(n) 11760 8960 18060 6176 13440 7920 11952 7920 18538 4896
n 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550
φ(n) 18540 9072 10584 8640 14832 5600 17440 9272 12312 6240
n 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560
φ(n) 17112 6176 18552 9276 9888 9276 14400 6180 18216 7168
n 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570
φ(n) 11792 9280 17568 4608 14352 9282 12372 8400 17940 4944
n 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580
φ(n) 15876 9284 12000 9000 14840 6048 17136 7956 11240 7424
n 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590
φ(n) 17472 5832 18582 8800 8352 9292 18586 6192 17920 6240
n 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600
φ(n) 12392 7872 18592 6192 14872 9296 12396 8736 15936 4800
n 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610
φ(n) 15840 9100 11232 9300 14640 5304 17776 9296 12404 7440
n 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620
φ(n) 18072 5520 15948 9040 9216 8544 18616 5936 18144 6048
n 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630
φ(n) 12408 9310 16920 6144 14800 9108 10632 9312 17184 4752
n 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640
φ(n) 18000 8704 12420 7260 14904 6208 18636 9318 11664 7424
n 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650
φ(n) 15972 5712 18360 9048 8960 9322 17976 5184 17536 7440
n 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660
φ(n) 12432 9324 17820 6216 11520 8320 12420 8820 18216 4960
n 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670
φ(n) 18660 7560 12440 9328 14928 5760 16960 8592 10584 7464
n 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680
φ(n) 18670 6208 18340 9336 9840 7392 17676 5640 18678 7456
n 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690
φ(n) 11472 9340 14976 6192 14400 9342 12456 9216 16980 4224
n 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700
φ(n) 18690 9344 11880 8616 14952 5760 16020 9348 11880 6400
n 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710
φ(n) 18700 6228 18328 7968 9408 9108 17256 6232 18304 7480
n 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720
φ(n) 9720 9352 18712 6236 14112 9356 11712 7980 18718 4608
n 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730
φ(n) 18432 7920 12324 9000 12720 6240 18360 9360 12480 7488
n 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740
φ(n) 18730 5328 15600 8064 9984 9360 18240 6228 16056 7488
n 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750
φ(n) 12492 9370 18742 5600 14256 7344 12492 9072 18748 5000
n 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760
φ(n) 17632 9344 9936 9376 13200 6240 18756 9184 11232 6336
n 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770
φ(n) 18432 6032 18088 9380 9936 8520 16044 5632 18632 7504
n 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780
φ(n) 12512 8208 18772 5328 15000 9384 11360 9120 18480 4992
n 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790
φ(n) 16092 9390 12516 9376 13056 6000 18786 7200 12524 7512
n 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800
φ(n) 16632 6048 18792 9396 8544 9072 18796 5760 17080 7360
n 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810
φ(n) 12528 7488 18802 6264 15040 9402 12536 9400 16116 4320
n 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820
φ(n) 17352 9404 12540 8976 14560 5376 18180 9312 11520 7520
n 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830
φ(n) 16240 6272 16128 8640 10000 9412 18480 6264 17820 6432
n 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840
φ(n) 12552 8480 18288 6048 15064 8832 9504 9418 18838 4992
n 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850
φ(n) 18532 9420 11400 8064 15072 6264 18400 8640 12240 6720
n 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860
φ(n) 16152 6280 17728 8560 10032 9424 18576 5376 18858 7040
n 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870
φ(n) 12572 9430 17400 6240 11760 9432 11880 9152 18868 4608
n 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880
φ(n) 18592 8064 12528 9436 15000 5280 18396 9438 10080 7424
n 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890
φ(n) 18564 6288 18040 9440 10064 7560 16000 6288 17424 7552
n 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900
φ(n) 12588 9444 16188 6072 15112 9440 12596 8580 18898 4320
n 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910
φ(n) 18400 8712 12600 8832 14256 5984 15552 9072 11400 7200
n 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920
φ(n) 18910 6272 18912 8064 9216 9456 18916 6300 18918 6720
n 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930
φ(n) 9984 9460 18648 5904 15120 9462 12600 7488 18084 5040
n 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940
φ(n) 17200 9464 12620 9466 12960 6288 18256 8896 12296 7568
n 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950
φ(n) 16560 4800 17928 9216 10080 9472 18946 6312 16236 7560
n 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960
φ(n) 12632 8976 17220 5832 14208 8112 12320 9478 18958 4992
n 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970
φ(n) 18612 8964 10584 8600 15168 6048 17496 9480 12644 6480
n 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980
φ(n) 18600 5760 18972 9256 8800 9472 16260 6324 18978 6912
n 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990
φ(n) 11664 9490 18480 5376 15184 8620 12656 9200 17856 5040
n 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000
φ(n) 16272 9488 11664 9496 14560 6328 17160 7656 12660 7200

J.P. Martin-Flatin