]>
Euler's Totient Function for n = 17001..18000
Euler's Totient Function for n = 17001..18000
Note: This page uses MathML. To view it properly, you need a MathML-enabled browser. You may also have to install some fonts.
Euler's totient function (also known as the "phi function") counts the number of natural integers less than n that are coprime to n. It is very useful in number theory, e.g. to compute the number of primitive roots modulo a prime n. For more information, see:
- Wikipedia
- Encyclopedia of Mathematics
-
Lindsay N. Childs, A Concrete Introduction to Higher Algebra,
3rd ed., Springer, 2009, pp. 111 and 179-180.
-
G.H. Hardy and E.M. Wright, An Introduction to the Theory
of Numbers, 6th ed., Oxford University Press, 2008, pp. 63-65.
The values presented below were computed in 2015 using a Python program.
n |
17001 |
17002 |
17003 |
17004 |
17005 |
17006 |
17007 |
17008 |
17009 |
17010 |
φ(n) |
11328 |
8500 |
14532 |
5184 |
12816 |
7720 |
11336 |
8496 |
16704 |
3888 |
|
|
|
|
|
|
|
|
|
|
|
n |
17011 |
17012 |
17013 |
17014 |
17015 |
17016 |
17017 |
17018 |
17019 |
17020 |
φ(n) |
17010 |
8504 |
11024 |
8280 |
13120 |
5664 |
11520 |
8316 |
10800 |
6336 |
|
|
|
|
|
|
|
|
|
|
|
n |
17021 |
17022 |
17023 |
17024 |
17025 |
17026 |
17027 |
17028 |
17029 |
17030 |
φ(n) |
17020 |
5672 |
16408 |
6912 |
9040 |
8512 |
17026 |
5040 |
17028 |
6240 |
|
|
|
|
|
|
|
|
|
|
|
n |
17031 |
17032 |
17033 |
17034 |
17035 |
17036 |
17037 |
17038 |
17039 |
17040 |
φ(n) |
9720 |
8512 |
17032 |
5312 |
13624 |
8516 |
11340 |
7296 |
15480 |
4480 |
|
|
|
|
|
|
|
|
|
|
|
n |
17041 |
17042 |
17043 |
17044 |
17045 |
17046 |
17047 |
17048 |
17049 |
17050 |
φ(n) |
17040 |
8520 |
9504 |
8520 |
11664 |
5676 |
17046 |
8520 |
11364 |
6000 |
|
|
|
|
|
|
|
|
|
|
|
n |
17051 |
17052 |
17053 |
17054 |
17055 |
17056 |
17057 |
17058 |
17059 |
17060 |
φ(n) |
15776 |
4704 |
17052 |
8526 |
9072 |
7680 |
16560 |
5684 |
14616 |
6816 |
|
|
|
|
|
|
|
|
|
|
|
n |
17061 |
17062 |
17063 |
17064 |
17065 |
17066 |
17067 |
17068 |
17069 |
17070 |
φ(n) |
10120 |
8064 |
16800 |
5616 |
13648 |
6864 |
11376 |
8000 |
15600 |
4544 |
|
|
|
|
|
|
|
|
|
|
|
n |
17071 |
17072 |
17073 |
17074 |
17075 |
17076 |
17077 |
17078 |
17079 |
17080 |
φ(n) |
16632 |
7680 |
9720 |
8536 |
13640 |
5688 |
17076 |
8538 |
11384 |
5760 |
|
|
|
|
|
|
|
|
|
|
|
n |
17081 |
17082 |
17083 |
17084 |
17085 |
17086 |
17087 |
17088 |
17089 |
17090 |
φ(n) |
15120 |
5184 |
15520 |
8540 |
8448 |
8542 |
14640 |
5632 |
16324 |
6832 |
|
|
|
|
|
|
|
|
|
|
|
n |
17091 |
17092 |
17093 |
17094 |
17095 |
17096 |
17097 |
17098 |
17099 |
17100 |
φ(n) |
11340 |
8544 |
17092 |
4320 |
12576 |
8544 |
11040 |
8364 |
17098 |
4320 |
|
|
|
|
|
|
|
|
|
|
|
n |
17101 |
17102 |
17103 |
17104 |
17105 |
17106 |
17107 |
17108 |
17109 |
17110 |
φ(n) |
14616 |
8032 |
11400 |
8544 |
12400 |
5700 |
17106 |
6624 |
11400 |
6496 |
|
|
|
|
|
|
|
|
|
|
|
n |
17111 |
17112 |
17113 |
17114 |
17115 |
17116 |
17117 |
17118 |
17119 |
17120 |
φ(n) |
16800 |
5280 |
16848 |
8316 |
7776 |
7760 |
17116 |
5688 |
14976 |
6784 |
|
|
|
|
|
|
|
|
|
|
|
n |
17121 |
17122 |
17123 |
17124 |
17125 |
17126 |
17127 |
17128 |
17129 |
17130 |
φ(n) |
10512 |
7332 |
17122 |
5704 |
13600 |
8562 |
10320 |
8560 |
14676 |
4560 |
|
|
|
|
|
|
|
|
|
|
|
n |
17131 |
17132 |
17133 |
17134 |
17135 |
17136 |
17137 |
17138 |
17139 |
17140 |
φ(n) |
16632 |
8564 |
11420 |
7896 |
13024 |
4608 |
17136 |
7200 |
10976 |
6848 |
|
|
|
|
|
|
|
|
|
|
|
n |
17141 |
17142 |
17143 |
17144 |
17145 |
17146 |
17147 |
17148 |
17149 |
17150 |
φ(n) |
16800 |
5712 |
14040 |
8568 |
9072 |
8572 |
15816 |
5712 |
15580 |
5880 |
|
|
|
|
|
|
|
|
|
|
|
n |
17151 |
17152 |
17153 |
17154 |
17155 |
17156 |
17157 |
17158 |
17159 |
17160 |
φ(n) |
11432 |
8448 |
16128 |
5712 |
13248 |
8576 |
9072 |
8184 |
17158 |
3840 |
|
|
|
|
|
|
|
|
|
|
|
n |
17161 |
17162 |
17163 |
17164 |
17165 |
17166 |
17167 |
17168 |
17169 |
17170 |
φ(n) |
17030 |
8580 |
11436 |
7344 |
13728 |
5720 |
17166 |
8064 |
11136 |
6400 |
|
|
|
|
|
|
|
|
|
|
|
n |
17171 |
17172 |
17173 |
17174 |
17175 |
17176 |
17177 |
17178 |
17179 |
17180 |
φ(n) |
13320 |
5616 |
15840 |
8280 |
9120 |
8064 |
16896 |
4896 |
16720 |
6864 |
|
|
|
|
|
|
|
|
|
|
|
n |
17181 |
17182 |
17183 |
17184 |
17185 |
17186 |
17187 |
17188 |
17189 |
17190 |
φ(n) |
10824 |
7700 |
17182 |
5696 |
11760 |
7920 |
10752 |
8592 |
17188 |
4560 |
|
|
|
|
|
|
|
|
|
|
|
n |
17191 |
17192 |
17193 |
17194 |
17195 |
17196 |
17197 |
17198 |
17199 |
17200 |
φ(n) |
17190 |
7344 |
10400 |
8596 |
12960 |
5728 |
16576 |
8598 |
9072 |
6720 |
|
|
|
|
|
|
|
|
|
|
|
n |
17201 |
17202 |
17203 |
17204 |
17205 |
17206 |
17207 |
17208 |
17209 |
17210 |
φ(n) |
16932 |
5520 |
17202 |
7040 |
8640 |
7368 |
17206 |
5712 |
17208 |
6880 |
|
|
|
|
|
|
|
|
|
|
|
n |
17211 |
17212 |
17213 |
17214 |
17215 |
17216 |
17217 |
17218 |
17219 |
17220 |
φ(n) |
11472 |
7920 |
14748 |
5400 |
12480 |
8576 |
11472 |
8608 |
16896 |
3840 |
|
|
|
|
|
|
|
|
|
|
|
n |
17221 |
17222 |
17223 |
17224 |
17225 |
17226 |
17227 |
17228 |
17229 |
17230 |
φ(n) |
16192 |
8424 |
11480 |
8608 |
12480 |
5040 |
13992 |
8352 |
11484 |
6888 |
|
|
|
|
|
|
|
|
|
|
|
n |
17231 |
17232 |
17233 |
17234 |
17235 |
17236 |
17237 |
17238 |
17239 |
17240 |
φ(n) |
17230 |
5728 |
16308 |
7380 |
9168 |
8280 |
15660 |
4992 |
17238 |
6880 |
|
|
|
|
|
|
|
|
|
|
|
n |
17241 |
17242 |
17243 |
17244 |
17245 |
17246 |
17247 |
17248 |
17249 |
17250 |
φ(n) |
9840 |
8352 |
16800 |
5736 |
13792 |
8622 |
11496 |
6720 |
16836 |
4400 |
|
|
|
|
|
|
|
|
|
|
|
n |
17251 |
17252 |
17253 |
17254 |
17255 |
17256 |
17257 |
17258 |
17259 |
17260 |
φ(n) |
15912 |
8136 |
11340 |
8626 |
10752 |
5744 |
17256 |
8628 |
10440 |
6896 |
|
|
|
|
|
|
|
|
|
|
|
n |
17261 |
17262 |
17263 |
17264 |
17265 |
17266 |
17267 |
17268 |
17269 |
17270 |
φ(n) |
16800 |
4896 |
16920 |
7872 |
9200 |
8448 |
16680 |
5752 |
14796 |
6240 |
|
|
|
|
|
|
|
|
|
|
|
n |
17271 |
17272 |
17273 |
17274 |
17275 |
17276 |
17277 |
17278 |
17279 |
17280 |
φ(n) |
10800 |
8064 |
16500 |
5756 |
13800 |
7392 |
10608 |
8424 |
16776 |
4608 |
|
|
|
|
|
|
|
|
|
|
|
n |
17281 |
17282 |
17283 |
17284 |
17285 |
17286 |
17287 |
17288 |
17289 |
17290 |
φ(n) |
15700 |
8640 |
9864 |
8288 |
13824 |
5544 |
16936 |
8640 |
10752 |
5184 |
|
|
|
|
|
|
|
|
|
|
|
n |
17291 |
17292 |
17293 |
17294 |
17295 |
17296 |
17297 |
17298 |
17299 |
17300 |
φ(n) |
17290 |
5200 |
17292 |
8646 |
9216 |
8096 |
14784 |
5580 |
17298 |
6880 |
|
|
|
|
|
|
|
|
|
|
|
n |
17301 |
17302 |
17303 |
17304 |
17305 |
17306 |
17307 |
17308 |
17309 |
17310 |
φ(n) |
11232 |
8400 |
14520 |
4896 |
13840 |
8128 |
11520 |
8652 |
16380 |
4608 |
|
|
|
|
|
|
|
|
|
|
|
n |
17311 |
17312 |
17313 |
17314 |
17315 |
17316 |
17317 |
17318 |
17319 |
17320 |
φ(n) |
14832 |
8640 |
11088 |
7860 |
13848 |
5184 |
17316 |
7416 |
11000 |
6912 |
|
|
|
|
|
|
|
|
|
|
|
n |
17321 |
17322 |
17323 |
17324 |
17325 |
17326 |
17327 |
17328 |
17329 |
17330 |
φ(n) |
17320 |
5772 |
16288 |
8400 |
7200 |
8662 |
17326 |
5472 |
15120 |
6928 |
|
|
|
|
|
|
|
|
|
|
|
n |
17331 |
17332 |
17333 |
17334 |
17335 |
17336 |
17337 |
17338 |
17339 |
17340 |
φ(n) |
11232 |
7416 |
17332 |
5724 |
13864 |
7840 |
11556 |
8668 |
14856 |
4352 |
|
|
|
|
|
|
|
|
|
|
|
n |
17341 |
17342 |
17343 |
17344 |
17345 |
17346 |
17347 |
17348 |
17349 |
17350 |
φ(n) |
17340 |
7392 |
11040 |
8640 |
13872 |
4872 |
14760 |
8672 |
11564 |
6920 |
|
|
|
|
|
|
|
|
|
|
|
n |
17351 |
17352 |
17353 |
17354 |
17355 |
17356 |
17357 |
17358 |
17359 |
17360 |
φ(n) |
17350 |
5760 |
14256 |
8676 |
8448 |
8676 |
16320 |
5240 |
17358 |
5760 |
|
|
|
|
|
|
|
|
|
|
|
n |
17361 |
17362 |
17363 |
17364 |
17365 |
17366 |
17367 |
17368 |
17369 |
17370 |
φ(n) |
11556 |
8680 |
17088 |
5784 |
13200 |
8208 |
9912 |
7968 |
15780 |
4608 |
|
|
|
|
|
|
|
|
|
|
|
n |
17371 |
17372 |
17373 |
17374 |
17375 |
17376 |
17377 |
17378 |
17379 |
17380 |
φ(n) |
16744 |
8400 |
11580 |
6912 |
13800 |
5760 |
17376 |
8688 |
11580 |
6240 |
|
|
|
|
|
|
|
|
|
|
|
n |
17381 |
17382 |
17383 |
17384 |
17385 |
17386 |
17387 |
17388 |
17389 |
17390 |
φ(n) |
13680 |
5792 |
17382 |
8320 |
8640 |
8692 |
17386 |
4752 |
17388 |
6624 |
|
|
|
|
|
|
|
|
|
|
|
n |
17391 |
17392 |
17393 |
17394 |
17395 |
17396 |
17397 |
17398 |
17399 |
17400 |
φ(n) |
9600 |
8688 |
17392 |
5328 |
11760 |
8696 |
11592 |
8698 |
17136 |
4480 |
|
|
|
|
|
|
|
|
|
|
|
n |
17401 |
17402 |
17403 |
17404 |
17405 |
17406 |
17407 |
17408 |
17409 |
17410 |
φ(n) |
17400 |
6720 |
11600 |
8208 |
13688 |
5796 |
15912 |
8192 |
9936 |
6960 |
|
|
|
|
|
|
|
|
|
|
|
n |
17411 |
17412 |
17413 |
17414 |
17415 |
17416 |
17417 |
17418 |
17419 |
17420 |
φ(n) |
16632 |
5800 |
15820 |
8706 |
9072 |
7440 |
17416 |
5804 |
17418 |
6336 |
|
|
|
|
|
|
|
|
|
|
|
n |
17421 |
17422 |
17423 |
17424 |
17425 |
17426 |
17427 |
17428 |
17429 |
17430 |
φ(n) |
11612 |
8400 |
14040 |
5280 |
12800 |
8712 |
11232 |
8712 |
16800 |
3936 |
|
|
|
|
|
|
|
|
|
|
|
n |
17431 |
17432 |
17433 |
17434 |
17435 |
17436 |
17437 |
17438 |
17439 |
17440 |
φ(n) |
17430 |
8712 |
10656 |
8316 |
12640 |
5808 |
14352 |
8718 |
11624 |
6912 |
|
|
|
|
|
|
|
|
|
|
|
n |
17441 |
17442 |
17443 |
17444 |
17445 |
17446 |
17447 |
17448 |
17449 |
17450 |
φ(n) |
17172 |
5184 |
17442 |
7392 |
9296 |
7200 |
17136 |
5808 |
17448 |
6960 |
|
|
|
|
|
|
|
|
|
|
|
n |
17451 |
17452 |
17453 |
17454 |
17455 |
17456 |
17457 |
17458 |
17459 |
17460 |
φ(n) |
9936 |
8724 |
16860 |
5816 |
13960 |
8720 |
10120 |
7056 |
14976 |
4608 |
|
|
|
|
|
|
|
|
|
|
|
n |
17461 |
17462 |
17463 |
17464 |
17465 |
17466 |
17467 |
17468 |
17469 |
17470 |
φ(n) |
16524 |
8730 |
11640 |
8352 |
11952 |
5600 |
17466 |
7920 |
11628 |
6984 |
|
|
|
|
|
|
|
|
|
|
|
n |
17471 |
17472 |
17473 |
17474 |
17475 |
17476 |
17477 |
17478 |
17479 |
17480 |
φ(n) |
17470 |
4608 |
17200 |
8736 |
9280 |
8192 |
17476 |
5820 |
13560 |
6336 |
|
|
|
|
|
|
|
|
|
|
|
n |
17481 |
17482 |
17483 |
17484 |
17485 |
17486 |
17487 |
17488 |
17489 |
17490 |
φ(n) |
11652 |
8740 |
17482 |
5520 |
12864 |
7488 |
11088 |
8736 |
17488 |
4160 |
|
|
|
|
|
|
|
|
|
|
|
n |
17491 |
17492 |
17493 |
17494 |
17495 |
17496 |
17497 |
17498 |
17499 |
17500 |
φ(n) |
17490 |
8744 |
9408 |
8746 |
13992 |
5832 |
17496 |
8064 |
11016 |
6000 |
|
|
|
|
|
|
|
|
|
|
|
n |
17501 |
17502 |
17503 |
17504 |
17505 |
17506 |
17507 |
17508 |
17509 |
17510 |
φ(n) |
15120 |
5832 |
16720 |
8736 |
9312 |
8752 |
14400 |
5832 |
17508 |
6528 |
|
|
|
|
|
|
|
|
|
|
|
n |
17511 |
17512 |
17513 |
17514 |
17515 |
17516 |
17517 |
17518 |
17519 |
17520 |
φ(n) |
10752 |
7920 |
17220 |
4968 |
13440 |
8400 |
11676 |
8280 |
17518 |
4608 |
|
|
|
|
|
|
|
|
|
|
|
n |
17521 |
17522 |
17523 |
17524 |
17525 |
17526 |
17527 |
17528 |
17529 |
17530 |
φ(n) |
15012 |
8760 |
10440 |
8064 |
14000 |
5544 |
16480 |
7488 |
11684 |
7008 |
|
|
|
|
|
|
|
|
|
|
|
n |
17531 |
17532 |
17533 |
17534 |
17535 |
17536 |
17537 |
17538 |
17539 |
17540 |
φ(n) |
17112 |
5832 |
17248 |
7960 |
7968 |
8704 |
15120 |
5616 |
17538 |
7008 |
|
|
|
|
|
|
|
|
|
|
|
n |
17541 |
17542 |
17543 |
17544 |
17545 |
17546 |
17547 |
17548 |
17549 |
17550 |
φ(n) |
11688 |
7476 |
17160 |
5376 |
12320 |
8460 |
11696 |
8480 |
14256 |
4320 |
|
|
|
|
|
|
|
|
|
|
|
n |
17551 |
17552 |
17553 |
17554 |
17555 |
17556 |
17557 |
17558 |
17559 |
17560 |
φ(n) |
17550 |
8768 |
11700 |
8580 |
14040 |
4320 |
17280 |
8778 |
11700 |
7008 |
|
|
|
|
|
|
|
|
|
|
|
n |
17561 |
17562 |
17563 |
17564 |
17565 |
17566 |
17567 |
17568 |
17569 |
17570 |
φ(n) |
16512 |
5852 |
13824 |
8780 |
9360 |
8782 |
15960 |
5760 |
17568 |
6000 |
|
|
|
|
|
|
|
|
|
|
|
n |
17571 |
17572 |
17573 |
17574 |
17575 |
17576 |
17577 |
17578 |
17579 |
17580 |
φ(n) |
11712 |
8360 |
17572 |
5600 |
12960 |
8112 |
9720 |
7360 |
17578 |
4672 |
|
|
|
|
|
|
|
|
|
|
|
n |
17581 |
17582 |
17583 |
17584 |
17585 |
17586 |
17587 |
17588 |
17589 |
17590 |
φ(n) |
17580 |
8584 |
11720 |
7488 |
14064 |
5856 |
17136 |
8792 |
9600 |
7032 |
|
|
|
|
|
|
|
|
|
|
|
n |
17591 |
17592 |
17593 |
17594 |
17595 |
17596 |
17597 |
17598 |
17599 |
17600 |
φ(n) |
15036 |
5856 |
17280 |
8316 |
8448 |
8528 |
17596 |
5016 |
17598 |
6400 |
|
|
|
|
|
|
|
|
|
|
|
n |
17601 |
17602 |
17603 |
17604 |
17605 |
17606 |
17607 |
17608 |
17609 |
17610 |
φ(n) |
11732 |
8112 |
16968 |
5832 |
12048 |
8802 |
11736 |
8400 |
17608 |
4688 |
|
|
|
|
|
|
|
|
|
|
|
n |
17611 |
17612 |
17613 |
17614 |
17615 |
17616 |
17617 |
17618 |
17619 |
17620 |
φ(n) |
16000 |
6912 |
11016 |
8806 |
12960 |
5856 |
17316 |
8404 |
10056 |
7040 |
|
|
|
|
|
|
|
|
|
|
|
n |
17621 |
17622 |
17623 |
17624 |
17625 |
17626 |
17627 |
17628 |
17629 |
17630 |
φ(n) |
17292 |
5280 |
17622 |
8808 |
9200 |
7548 |
17626 |
5376 |
16320 |
6720 |
|
|
|
|
|
|
|
|
|
|
|
n |
17631 |
17632 |
17633 |
17634 |
17635 |
17636 |
17637 |
17638 |
17639 |
17640 |
φ(n) |
11736 |
8064 |
13680 |
5876 |
14104 |
8816 |
11756 |
8818 |
17040 |
4032 |
|
|
|
|
|
|
|
|
|
|
|
n |
17641 |
17642 |
17643 |
17644 |
17645 |
17646 |
17647 |
17648 |
17649 |
17650 |
φ(n) |
15312 |
8820 |
11760 |
8000 |
14112 |
5504 |
15120 |
8816 |
11232 |
7040 |
|
|
|
|
|
|
|
|
|
|
|
n |
17651 |
17652 |
17653 |
17654 |
17655 |
17656 |
17657 |
17658 |
17659 |
17660 |
φ(n) |
16704 |
5880 |
17388 |
6912 |
8480 |
8824 |
17656 |
5832 |
17658 |
7056 |
|
|
|
|
|
|
|
|
|
|
|
n |
17661 |
17662 |
17663 |
17664 |
17665 |
17666 |
17667 |
17668 |
17669 |
17670 |
φ(n) |
9744 |
8830 |
16608 |
5632 |
14128 |
7920 |
10800 |
7560 |
17668 |
4320 |
|
|
|
|
|
|
|
|
|
|
|
n |
17671 |
17672 |
17673 |
17674 |
17675 |
17676 |
17677 |
17678 |
17679 |
17680 |
φ(n) |
17200 |
8648 |
11424 |
8836 |
12000 |
5880 |
16060 |
8838 |
11480 |
6144 |
|
|
|
|
|
|
|
|
|
|
|
n |
17681 |
17682 |
17683 |
17684 |
17685 |
17686 |
17687 |
17688 |
17689 |
17690 |
φ(n) |
17680 |
5040 |
17682 |
8840 |
9360 |
8568 |
16896 |
5280 |
14364 |
6720 |
|
|
|
|
|
|
|
|
|
|
|
n |
17691 |
17692 |
17693 |
17694 |
17695 |
17696 |
17697 |
17698 |
17699 |
17700 |
φ(n) |
11792 |
8844 |
16320 |
5892 |
14152 |
7488 |
11072 |
8848 |
16080 |
4640 |
|
|
|
|
|
|
|
|
|
|
|
n |
17701 |
17702 |
17703 |
17704 |
17705 |
17706 |
17707 |
17708 |
17709 |
17710 |
φ(n) |
17100 |
8632 |
10080 |
8848 |
14160 |
5424 |
17706 |
8352 |
11804 |
5280 |
|
|
|
|
|
|
|
|
|
|
|
n |
17711 |
17712 |
17713 |
17714 |
17715 |
17716 |
17717 |
17718 |
17719 |
17720 |
φ(n) |
17424 |
5760 |
17712 |
8320 |
9440 |
8568 |
15180 |
5904 |
15456 |
7072 |
|
|
|
|
|
|
|
|
|
|
|
n |
17721 |
17722 |
17723 |
17724 |
17725 |
17726 |
17727 |
17728 |
17729 |
17730 |
φ(n) |
10680 |
8860 |
17208 |
5040 |
14160 |
8862 |
11160 |
8832 |
17728 |
4704 |
|
|
|
|
|
|
|
|
|
|
|
n |
17731 |
17732 |
17733 |
17734 |
17735 |
17736 |
17737 |
17738 |
17739 |
17740 |
φ(n) |
14208 |
7200 |
11264 |
8866 |
14184 |
5904 |
17736 |
7560 |
11664 |
7088 |
|
|
|
|
|
|
|
|
|
|
|
n |
17741 |
17742 |
17743 |
17744 |
17745 |
17746 |
17747 |
17748 |
17749 |
17750 |
φ(n) |
17472 |
5912 |
16120 |
8864 |
7488 |
8388 |
17746 |
5376 |
17748 |
7000 |
|
|
|
|
|
|
|
|
|
|
|
n |
17751 |
17752 |
17753 |
17754 |
17755 |
17756 |
17757 |
17758 |
17759 |
17760 |
φ(n) |
11520 |
7584 |
17280 |
5360 |
13728 |
8448 |
11832 |
8184 |
14616 |
4608 |
|
|
|
|
|
|
|
|
|
|
|
n |
17761 |
17762 |
17763 |
17764 |
17765 |
17766 |
17767 |
17768 |
17769 |
17770 |
φ(n) |
17760 |
8692 |
11400 |
8880 |
11520 |
4968 |
17496 |
8880 |
11844 |
7104 |
|
|
|
|
|
|
|
|
|
|
|
n |
17771 |
17772 |
17773 |
17774 |
17775 |
17776 |
17777 |
17778 |
17779 |
17780 |
φ(n) |
16392 |
5920 |
15228 |
8886 |
9360 |
8000 |
17136 |
5924 |
16984 |
6048 |
|
|
|
|
|
|
|
|
|
|
|
n |
17781 |
17782 |
17783 |
17784 |
17785 |
17786 |
17787 |
17788 |
17789 |
17790 |
φ(n) |
11852 |
8352 |
17782 |
5184 |
14224 |
8892 |
9240 |
8892 |
17788 |
4736 |
|
|
|
|
|
|
|
|
|
|
|
n |
17791 |
17792 |
17793 |
17794 |
17795 |
17796 |
17797 |
17798 |
17799 |
17800 |
φ(n) |
17790 |
8832 |
11844 |
7200 |
14232 |
5928 |
15984 |
8080 |
11136 |
7040 |
|
|
|
|
|
|
|
|
|
|
|
n |
17801 |
17802 |
17803 |
17804 |
17805 |
17806 |
17807 |
17808 |
17809 |
17810 |
φ(n) |
15252 |
5544 |
16848 |
8900 |
9488 |
8568 |
17806 |
4992 |
16180 |
6528 |
|
|
|
|
|
|
|
|
|
|
|
n |
17811 |
17812 |
17813 |
17814 |
17815 |
17816 |
17817 |
17818 |
17819 |
17820 |
φ(n) |
11868 |
8640 |
17388 |
5936 |
12192 |
8320 |
11876 |
8700 |
17544 |
4320 |
|
|
|
|
|
|
|
|
|
|
|
n |
17821 |
17822 |
17823 |
17824 |
17825 |
17826 |
17827 |
17828 |
17829 |
17830 |
φ(n) |
17500 |
7128 |
10944 |
8896 |
13200 |
5940 |
17826 |
8912 |
10152 |
7128 |
|
|
|
|
|
|
|
|
|
|
|
n |
17831 |
17832 |
17833 |
17834 |
17835 |
17836 |
17837 |
17838 |
17839 |
17840 |
φ(n) |
16200 |
5936 |
16768 |
8640 |
8960 |
7056 |
17836 |
5940 |
17838 |
7104 |
|
|
|
|
|
|
|
|
|
|
|
n |
17841 |
17842 |
17843 |
17844 |
17845 |
17846 |
17847 |
17848 |
17849 |
17850 |
φ(n) |
11232 |
8100 |
15288 |
5944 |
13776 |
8922 |
11880 |
8448 |
16464 |
3840 |
|
|
|
|
|
|
|
|
|
|
|
n |
17851 |
17852 |
17853 |
17854 |
17855 |
17856 |
17857 |
17858 |
17859 |
17860 |
φ(n) |
17850 |
8924 |
10800 |
8736 |
14280 |
5760 |
15300 |
8928 |
11904 |
6624 |
|
|
|
|
|
|
|
|
|
|
|
n |
17861 |
17862 |
17863 |
17864 |
17865 |
17866 |
17867 |
17868 |
17869 |
17870 |
φ(n) |
17472 |
5472 |
17862 |
6720 |
9504 |
8932 |
16800 |
5952 |
17596 |
7144 |
|
|
|
|
|
|
|
|
|
|
|
n |
17871 |
17872 |
17873 |
17874 |
17875 |
17876 |
17877 |
17878 |
17879 |
17880 |
φ(n) |
9504 |
8928 |
17520 |
5940 |
12000 |
8640 |
11600 |
7656 |
16920 |
4736 |
|
|
|
|
|
|
|
|
|
|
|
n |
17881 |
17882 |
17883 |
17884 |
17885 |
17886 |
17887 |
17888 |
17889 |
17890 |
φ(n) |
17880 |
8940 |
11916 |
8384 |
12096 |
5400 |
17280 |
8064 |
11616 |
7152 |
|
|
|
|
|
|
|
|
|
|
|
n |
17891 |
17892 |
17893 |
17894 |
17895 |
17896 |
17897 |
17898 |
17899 |
17900 |
φ(n) |
17890 |
5040 |
17248 |
8536 |
9536 |
8944 |
16260 |
5616 |
15336 |
7120 |
|
|
|
|
|
|
|
|
|
|
|
n |
17901 |
17902 |
17903 |
17904 |
17905 |
17906 |
17907 |
17908 |
17909 |
17910 |
φ(n) |
10368 |
8950 |
17902 |
5952 |
14320 |
7668 |
11592 |
7920 |
17908 |
4752 |
|
|
|
|
|
|
|
|
|
|
|
n |
17911 |
17912 |
17913 |
17914 |
17915 |
17916 |
17917 |
17918 |
17919 |
17920 |
φ(n) |
17910 |
8952 |
10224 |
8112 |
14328 |
5968 |
15840 |
8160 |
10800 |
6144 |
|
|
|
|
|
|
|
|
|
|
|
n |
17921 |
17922 |
17923 |
17924 |
17925 |
17926 |
17927 |
17928 |
17929 |
17930 |
φ(n) |
17920 |
5712 |
17922 |
8960 |
9520 |
8962 |
14112 |
5904 |
17928 |
6480 |
|
|
|
|
|
|
|
|
|
|
|
n |
17931 |
17932 |
17933 |
17934 |
17935 |
17936 |
17937 |
17938 |
17939 |
17940 |
φ(n) |
11592 |
8964 |
17628 |
5040 |
13440 |
8352 |
11952 |
8968 |
17938 |
4224 |
|
|
|
|
|
|
|
|
|
|
|
n |
17941 |
17942 |
17943 |
17944 |
17945 |
17946 |
17947 |
17948 |
17949 |
17950 |
φ(n) |
13920 |
8970 |
11960 |
8968 |
13824 |
5976 |
17680 |
7680 |
11520 |
7160 |
|
|
|
|
|
|
|
|
|
|
|
n |
17951 |
17952 |
17953 |
17954 |
17955 |
17956 |
17957 |
17958 |
17959 |
17960 |
φ(n) |
17304 |
5120 |
16560 |
8740 |
7776 |
8844 |
17956 |
5760 |
17958 |
7168 |
|
|
|
|
|
|
|
|
|
|
|
n |
17961 |
17962 |
17963 |
17964 |
17965 |
17966 |
17967 |
17968 |
17969 |
17970 |
φ(n) |
11972 |
7692 |
15400 |
5976 |
14368 |
8280 |
11648 |
8976 |
14400 |
4784 |
|
|
|
|
|
|
|
|
|
|
|
n |
17971 |
17972 |
17973 |
17974 |
17975 |
17976 |
17977 |
17978 |
17979 |
17980 |
φ(n) |
17970 |
8984 |
11976 |
7560 |
14360 |
5088 |
17976 |
8800 |
11040 |
6720 |
|
|
|
|
|
|
|
|
|
|
|
n |
17981 |
17982 |
17983 |
17984 |
17985 |
17986 |
17987 |
17988 |
17989 |
17990 |
φ(n) |
17980 |
5832 |
15372 |
8960 |
8640 |
8096 |
17986 |
5992 |
17988 |
6144 |
|
|
|
|
|
|
|
|
|
|
|
n |
17991 |
17992 |
17993 |
17994 |
17995 |
17996 |
17997 |
17998 |
17999 |
18000 |
φ(n) |
11988 |
8256 |
17028 |
5996 |
13920 |
8160 |
10272 |
8998 |
17520 |
4800 |
|
|
|
|
|
|
|
|
|
|
|
J.P. Martin-Flatin