]>
Euler's Totient Function for n = 12001..13000
Euler's Totient Function for n = 12001..13000
Note: This page uses MathML. To view it properly, you need a MathML-enabled browser. You may also have to install some fonts.
Euler's totient function (also known as the "phi function") counts the number of natural integers less than n that are coprime to n. It is very useful in number theory, e.g. to compute the number of primitive roots modulo a prime n. For more information, see:
- Wikipedia
- Encyclopedia of Mathematics
-
Lindsay N. Childs, A Concrete Introduction to Higher Algebra,
3rd ed., Springer, 2009, pp. 111 and 179-180.
-
G.H. Hardy and E.M. Wright, An Introduction to the Theory
of Numbers, 6th ed., Oxford University Press, 2008, pp. 63-65.
The values presented below were computed in 2015 using a Python program.
n |
12001 |
12002 |
12003 |
12004 |
12005 |
12006 |
12007 |
12008 |
12009 |
12010 |
φ(n) |
10900 |
5632 |
8000 |
6000 |
8232 |
3696 |
12006 |
5616 |
8004 |
4800 |
|
|
|
|
|
|
|
|
|
|
|
n |
12011 |
12012 |
12013 |
12014 |
12015 |
12016 |
12017 |
12018 |
12019 |
12020 |
φ(n) |
12010 |
2880 |
11680 |
6006 |
6336 |
6000 |
11760 |
4004 |
9600 |
4800 |
|
|
|
|
|
|
|
|
|
|
|
n |
12021 |
12022 |
12023 |
12024 |
12025 |
12026 |
12027 |
12028 |
12029 |
12030 |
φ(n) |
8012 |
6010 |
10920 |
3984 |
8640 |
5148 |
7560 |
5760 |
11484 |
3200 |
|
|
|
|
|
|
|
|
|
|
|
n |
12031 |
12032 |
12033 |
12034 |
12035 |
12036 |
12037 |
12038 |
12039 |
12040 |
φ(n) |
11752 |
5888 |
6840 |
5460 |
9184 |
3712 |
12036 |
5544 |
8024 |
4032 |
|
|
|
|
|
|
|
|
|
|
|
n |
12041 |
12042 |
12043 |
12044 |
12045 |
12046 |
12047 |
12048 |
12049 |
12050 |
φ(n) |
12040 |
3996 |
12042 |
6020 |
5760 |
5688 |
10320 |
4000 |
12048 |
4800 |
|
|
|
|
|
|
|
|
|
|
|
n |
12051 |
12052 |
12053 |
12054 |
12055 |
12056 |
12057 |
12058 |
12059 |
12060 |
φ(n) |
7344 |
5720 |
11328 |
3360 |
9640 |
5440 |
8036 |
6028 |
11640 |
3168 |
|
|
|
|
|
|
|
|
|
|
|
n |
12061 |
12062 |
12063 |
12064 |
12065 |
12066 |
12067 |
12068 |
12069 |
12070 |
φ(n) |
10332 |
5832 |
8040 |
5376 |
9072 |
4020 |
10960 |
5160 |
7992 |
4480 |
|
|
|
|
|
|
|
|
|
|
|
n |
12071 |
12072 |
12073 |
12074 |
12075 |
12076 |
12077 |
12078 |
12079 |
12080 |
φ(n) |
12070 |
4016 |
12072 |
6036 |
5280 |
6036 |
11136 |
3600 |
11776 |
4800 |
|
|
|
|
|
|
|
|
|
|
|
n |
12081 |
12082 |
12083 |
12084 |
12085 |
12086 |
12087 |
12088 |
12089 |
12090 |
φ(n) |
8052 |
5172 |
11760 |
3744 |
9664 |
6042 |
7488 |
6040 |
9360 |
2880 |
|
|
|
|
|
|
|
|
|
|
|
n |
12091 |
12092 |
12093 |
12094 |
12095 |
12096 |
12097 |
12098 |
12099 |
12100 |
φ(n) |
11872 |
6044 |
7728 |
6046 |
9280 |
3456 |
12096 |
5764 |
7776 |
4400 |
|
|
|
|
|
|
|
|
|
|
|
n |
12101 |
12102 |
12103 |
12104 |
12105 |
12106 |
12107 |
12108 |
12109 |
12110 |
φ(n) |
12100 |
4032 |
9072 |
5632 |
6432 |
6052 |
12106 |
4032 |
12108 |
4128 |
|
|
|
|
|
|
|
|
|
|
|
n |
12111 |
12112 |
12113 |
12114 |
12115 |
12116 |
12117 |
12118 |
12119 |
12120 |
φ(n) |
7320 |
6048 |
12112 |
4032 |
9688 |
5568 |
6912 |
5904 |
12118 |
3200 |
|
|
|
|
|
|
|
|
|
|
|
n |
12121 |
12122 |
12123 |
12124 |
12125 |
12126 |
12127 |
12128 |
12129 |
12130 |
φ(n) |
10560 |
5040 |
8064 |
5184 |
9600 |
3864 |
11880 |
6048 |
7440 |
4848 |
|
|
|
|
|
|
|
|
|
|
|
n |
12131 |
12132 |
12133 |
12134 |
12135 |
12136 |
12137 |
12138 |
12139 |
12140 |
φ(n) |
10392 |
4032 |
11020 |
6066 |
6464 |
5760 |
11856 |
3264 |
11880 |
4848 |
|
|
|
|
|
|
|
|
|
|
|
n |
12141 |
12142 |
12143 |
12144 |
12145 |
12146 |
12147 |
12148 |
12149 |
12150 |
φ(n) |
7560 |
5592 |
12142 |
3520 |
8304 |
6072 |
8096 |
6072 |
12148 |
3240 |
|
|
|
|
|
|
|
|
|
|
|
n |
12151 |
12152 |
12153 |
12154 |
12155 |
12156 |
12157 |
12158 |
12159 |
12160 |
φ(n) |
11704 |
5040 |
8100 |
5916 |
7680 |
4048 |
12156 |
6078 |
6912 |
4608 |
|
|
|
|
|
|
|
|
|
|
|
n |
12161 |
12162 |
12163 |
12164 |
12165 |
12166 |
12167 |
12168 |
12169 |
12170 |
φ(n) |
12160 |
4052 |
12162 |
6080 |
6480 |
4680 |
11638 |
3744 |
11844 |
4864 |
|
|
|
|
|
|
|
|
|
|
|
n |
12171 |
12172 |
12173 |
12174 |
12175 |
12176 |
12177 |
12178 |
12179 |
12180 |
φ(n) |
8112 |
5696 |
9936 |
4056 |
9720 |
6080 |
7200 |
6088 |
11520 |
2688 |
|
|
|
|
|
|
|
|
|
|
|
n |
12181 |
12182 |
12183 |
12184 |
12185 |
12186 |
12187 |
12188 |
12189 |
12190 |
φ(n) |
11232 |
6090 |
7800 |
6088 |
9744 |
4056 |
10440 |
5520 |
7616 |
4576 |
|
|
|
|
|
|
|
|
|
|
|
n |
12191 |
12192 |
12193 |
12194 |
12195 |
12196 |
12197 |
12198 |
12199 |
12200 |
φ(n) |
11952 |
4032 |
11968 |
4752 |
6480 |
6096 |
12196 |
3816 |
11080 |
4800 |
|
|
|
|
|
|
|
|
|
|
|
n |
12201 |
12202 |
12203 |
12204 |
12205 |
12206 |
12207 |
12208 |
12209 |
12210 |
φ(n) |
6888 |
6100 |
12202 |
4032 |
9760 |
5728 |
7488 |
5184 |
11760 |
2880 |
|
|
|
|
|
|
|
|
|
|
|
n |
12211 |
12212 |
12213 |
12214 |
12215 |
12216 |
12217 |
12218 |
12219 |
12220 |
φ(n) |
12210 |
5880 |
7656 |
5880 |
8352 |
4064 |
11556 |
5920 |
8144 |
4416 |
|
|
|
|
|
|
|
|
|
|
|
n |
12221 |
12222 |
12223 |
12224 |
12225 |
12226 |
12227 |
12228 |
12229 |
12230 |
φ(n) |
11000 |
3456 |
11488 |
6080 |
6480 |
6112 |
12226 |
4072 |
10476 |
4888 |
|
|
|
|
|
|
|
|
|
|
|
n |
12231 |
12232 |
12233 |
12234 |
12235 |
12236 |
12237 |
12238 |
12239 |
12240 |
φ(n) |
8100 |
5520 |
11280 |
4076 |
9784 |
4752 |
8156 |
5880 |
12238 |
3072 |
|
|
|
|
|
|
|
|
|
|
|
n |
12241 |
12242 |
12243 |
12244 |
12245 |
12246 |
12247 |
12248 |
12249 |
12250 |
φ(n) |
12240 |
6120 |
6240 |
6120 |
9360 |
3744 |
11880 |
6120 |
8160 |
4200 |
|
|
|
|
|
|
|
|
|
|
|
n |
12251 |
12252 |
12253 |
12254 |
12255 |
12256 |
12257 |
12258 |
12259 |
12260 |
φ(n) |
12250 |
4080 |
12252 |
5560 |
6048 |
6112 |
9792 |
4068 |
10560 |
4896 |
|
|
|
|
|
|
|
|
|
|
|
n |
12261 |
12262 |
12263 |
12264 |
12265 |
12266 |
12267 |
12268 |
12269 |
12270 |
φ(n) |
7920 |
6130 |
12262 |
3456 |
8880 |
6132 |
7728 |
6132 |
12268 |
3264 |
|
|
|
|
|
|
|
|
|
|
|
n |
12271 |
12272 |
12273 |
12274 |
12275 |
12276 |
12277 |
12278 |
12279 |
12280 |
φ(n) |
10512 |
5568 |
8180 |
5472 |
9800 |
3600 |
12276 |
5256 |
8184 |
4896 |
|
|
|
|
|
|
|
|
|
|
|
n |
12281 |
12282 |
12283 |
12284 |
12285 |
12286 |
12287 |
12288 |
12289 |
12290 |
φ(n) |
12280 |
3872 |
12040 |
5904 |
5184 |
6142 |
11160 |
4096 |
12288 |
4912 |
|
|
|
|
|
|
|
|
|
|
|
n |
12291 |
12292 |
12293 |
12294 |
12295 |
12296 |
12297 |
12298 |
12299 |
12300 |
φ(n) |
7680 |
5256 |
11628 |
4092 |
9832 |
5824 |
8196 |
5040 |
10500 |
3200 |
|
|
|
|
|
|
|
|
|
|
|
n |
12301 |
12302 |
12303 |
12304 |
12305 |
12306 |
12307 |
12308 |
12309 |
12310 |
φ(n) |
12300 |
6150 |
8196 |
6144 |
9328 |
3504 |
11880 |
5760 |
7440 |
4920 |
|
|
|
|
|
|
|
|
|
|
|
n |
12311 |
12312 |
12313 |
12314 |
12315 |
12316 |
12317 |
12318 |
12319 |
12320 |
φ(n) |
11352 |
3888 |
10548 |
5980 |
6560 |
6156 |
12096 |
4104 |
12096 |
3840 |
|
|
|
|
|
|
|
|
|
|
|
n |
12321 |
12322 |
12323 |
12324 |
12325 |
12326 |
12327 |
12328 |
12329 |
12330 |
φ(n) |
7992 |
6000 |
12322 |
3744 |
8960 |
6162 |
7032 |
5808 |
12328 |
3264 |
|
|
|
|
|
|
|
|
|
|
|
n |
12331 |
12332 |
12333 |
12334 |
12335 |
12336 |
12337 |
12338 |
12339 |
12340 |
φ(n) |
10440 |
6164 |
8220 |
5280 |
9864 |
4096 |
11232 |
5940 |
8208 |
4928 |
|
|
|
|
|
|
|
|
|
|
|
n |
12341 |
12342 |
12343 |
12344 |
12345 |
12346 |
12347 |
12348 |
12349 |
12350 |
φ(n) |
10080 |
3520 |
12342 |
6168 |
6576 |
6172 |
12346 |
3528 |
12064 |
4320 |
|
|
|
|
|
|
|
|
|
|
|
n |
12351 |
12352 |
12353 |
12354 |
12355 |
12356 |
12357 |
12358 |
12359 |
12360 |
φ(n) |
7832 |
6144 |
11220 |
3920 |
8448 |
6176 |
8232 |
5976 |
11616 |
3264 |
|
|
|
|
|
|
|
|
|
|
|
n |
12361 |
12362 |
12363 |
12364 |
12365 |
12366 |
12367 |
12368 |
12369 |
12370 |
φ(n) |
12052 |
5292 |
7584 |
5600 |
9888 |
4104 |
12136 |
6176 |
6480 |
4944 |
|
|
|
|
|
|
|
|
|
|
|
n |
12371 |
12372 |
12373 |
12374 |
12375 |
12376 |
12377 |
12378 |
12379 |
12380 |
φ(n) |
12144 |
4120 |
12372 |
5896 |
6000 |
4608 |
12376 |
4124 |
12378 |
4944 |
|
|
|
|
|
|
|
|
|
|
|
n |
12381 |
12382 |
12383 |
12384 |
12385 |
12386 |
12387 |
12388 |
12389 |
12390 |
φ(n) |
8252 |
6000 |
10080 |
4032 |
9904 |
5620 |
8256 |
5832 |
11424 |
2784 |
|
|
|
|
|
|
|
|
|
|
|
n |
12391 |
12392 |
12393 |
12394 |
12395 |
12396 |
12397 |
12398 |
12399 |
12400 |
φ(n) |
12390 |
6192 |
7776 |
6196 |
9504 |
4128 |
9240 |
6198 |
8264 |
4800 |
|
|
|
|
|
|
|
|
|
|
|
n |
12401 |
12402 |
12403 |
12404 |
12405 |
12406 |
12407 |
12408 |
12409 |
12410 |
φ(n) |
12400 |
3744 |
12168 |
5304 |
6608 |
6202 |
11736 |
3680 |
12408 |
4608 |
|
|
|
|
|
|
|
|
|
|
|
n |
12411 |
12412 |
12413 |
12414 |
12415 |
12416 |
12417 |
12418 |
12419 |
12420 |
φ(n) |
7056 |
5936 |
12412 |
4136 |
9120 |
6144 |
8276 |
5316 |
11280 |
3168 |
|
|
|
|
|
|
|
|
|
|
|
n |
12421 |
12422 |
12423 |
12424 |
12425 |
12426 |
12427 |
12428 |
12429 |
12430 |
φ(n) |
12420 |
6210 |
8000 |
6208 |
8400 |
3888 |
11424 |
5712 |
8280 |
4480 |
|
|
|
|
|
|
|
|
|
|
|
n |
12431 |
12432 |
12433 |
12434 |
12435 |
12436 |
12437 |
12438 |
12439 |
12440 |
φ(n) |
12000 |
3456 |
12432 |
6216 |
6624 |
6216 |
12436 |
4140 |
10656 |
4960 |
|
|
|
|
|
|
|
|
|
|
|
n |
12441 |
12442 |
12443 |
12444 |
12445 |
12446 |
12447 |
12448 |
12449 |
12450 |
φ(n) |
6720 |
6220 |
11880 |
3840 |
9360 |
5292 |
8280 |
6208 |
12180 |
3280 |
|
|
|
|
|
|
|
|
|
|
|
n |
12451 |
12452 |
12453 |
12454 |
12455 |
12456 |
12457 |
12458 |
12459 |
12460 |
φ(n) |
12450 |
5640 |
7104 |
5736 |
9568 |
4128 |
12456 |
6228 |
8304 |
4224 |
|
|
|
|
|
|
|
|
|
|
|
n |
12461 |
12462 |
12463 |
12464 |
12465 |
12466 |
12467 |
12468 |
12469 |
12470 |
φ(n) |
11712 |
3960 |
11220 |
5760 |
6624 |
5940 |
9792 |
4152 |
12096 |
4704 |
|
|
|
|
|
|
|
|
|
|
|
n |
12471 |
12472 |
12473 |
12474 |
12475 |
12476 |
12477 |
12478 |
12479 |
12480 |
φ(n) |
8312 |
6232 |
12472 |
3240 |
9960 |
6236 |
8316 |
5856 |
12478 |
3072 |
|
|
|
|
|
|
|
|
|
|
|
n |
12481 |
12482 |
12483 |
12484 |
12485 |
12486 |
12487 |
12488 |
12489 |
12490 |
φ(n) |
10692 |
6162 |
7776 |
6240 |
9040 |
4160 |
12486 |
5328 |
7920 |
4992 |
|
|
|
|
|
|
|
|
|
|
|
n |
12491 |
12492 |
12493 |
12494 |
12495 |
12496 |
12497 |
12498 |
12499 |
12500 |
φ(n) |
12490 |
4152 |
11160 |
6246 |
5376 |
5600 |
12496 |
4164 |
12040 |
5000 |
|
|
|
|
|
|
|
|
|
|
|
n |
12501 |
12502 |
12503 |
12504 |
12505 |
12506 |
12507 |
12508 |
12509 |
12510 |
φ(n) |
8316 |
4968 |
12502 |
4160 |
9600 |
5616 |
7560 |
6032 |
10716 |
3312 |
|
|
|
|
|
|
|
|
|
|
|
n |
12511 |
12512 |
12513 |
12514 |
12515 |
12516 |
12517 |
12518 |
12519 |
12520 |
φ(n) |
12510 |
5632 |
8064 |
6256 |
10008 |
3552 |
12516 |
5680 |
7632 |
4992 |
|
|
|
|
|
|
|
|
|
|
|
n |
12521 |
12522 |
12523 |
12524 |
12525 |
12526 |
12527 |
12528 |
12529 |
12530 |
φ(n) |
11844 |
4172 |
10728 |
6000 |
6640 |
6262 |
12526 |
4032 |
10560 |
4272 |
|
|
|
|
|
|
|
|
|
|
|
n |
12531 |
12532 |
12533 |
12534 |
12535 |
12536 |
12537 |
12538 |
12539 |
12540 |
φ(n) |
8352 |
5760 |
12300 |
4176 |
9504 |
6264 |
7128 |
6268 |
12538 |
2880 |
|
|
|
|
|
|
|
|
|
|
|
n |
12541 |
12542 |
12543 |
12544 |
12545 |
12546 |
12547 |
12548 |
12549 |
12550 |
φ(n) |
12540 |
6270 |
8064 |
5376 |
9216 |
3840 |
12546 |
6272 |
8096 |
5000 |
|
|
|
|
|
|
|
|
|
|
|
n |
12551 |
12552 |
12553 |
12554 |
12555 |
12556 |
12557 |
12558 |
12559 |
12560 |
φ(n) |
9720 |
4176 |
12552 |
6276 |
6480 |
6048 |
12096 |
3168 |
11880 |
4992 |
|
|
|
|
|
|
|
|
|
|
|
n |
12561 |
12562 |
12563 |
12564 |
12565 |
12566 |
12567 |
12568 |
12569 |
12570 |
φ(n) |
8112 |
5700 |
11808 |
4176 |
8592 |
6120 |
8120 |
6280 |
12568 |
3344 |
|
|
|
|
|
|
|
|
|
|
|
n |
12571 |
12572 |
12573 |
12574 |
12575 |
12576 |
12577 |
12578 |
12579 |
12580 |
φ(n) |
11592 |
5376 |
7560 |
6286 |
10040 |
4160 |
12576 |
5940 |
7176 |
4608 |
|
|
|
|
|
|
|
|
|
|
|
n |
12581 |
12582 |
12583 |
12584 |
12585 |
12586 |
12587 |
12588 |
12589 |
12590 |
φ(n) |
12012 |
4176 |
12582 |
5280 |
6704 |
5040 |
12240 |
4192 |
12588 |
5032 |
|
|
|
|
|
|
|
|
|
|
|
n |
12591 |
12592 |
12593 |
12594 |
12595 |
12596 |
12597 |
12598 |
12599 |
12600 |
φ(n) |
8388 |
6288 |
10752 |
4196 |
9120 |
6072 |
6912 |
6298 |
12264 |
2880 |
|
|
|
|
|
|
|
|
|
|
|
n |
12601 |
12602 |
12603 |
12604 |
12605 |
12606 |
12607 |
12608 |
12609 |
12610 |
φ(n) |
12600 |
6300 |
8400 |
5984 |
10080 |
3800 |
10800 |
6272 |
8388 |
4608 |
|
|
|
|
|
|
|
|
|
|
|
n |
12611 |
12612 |
12613 |
12614 |
12615 |
12616 |
12617 |
12618 |
12619 |
12620 |
φ(n) |
12610 |
4200 |
12612 |
4992 |
6496 |
5904 |
10800 |
4200 |
12618 |
5040 |
|
|
|
|
|
|
|
|
|
|
|
n |
12621 |
12622 |
12623 |
12624 |
12625 |
12626 |
12627 |
12628 |
12629 |
12630 |
φ(n) |
7200 |
6310 |
11640 |
4192 |
10000 |
6148 |
7920 |
4800 |
12384 |
3360 |
|
|
|
|
|
|
|
|
|
|
|
n |
12631 |
12632 |
12633 |
12634 |
12635 |
12636 |
12637 |
12638 |
12639 |
12640 |
φ(n) |
11872 |
6312 |
8420 |
6316 |
8208 |
3888 |
12636 |
6160 |
7640 |
4992 |
|
|
|
|
|
|
|
|
|
|
|
n |
12641 |
12642 |
12643 |
12644 |
12645 |
12646 |
12647 |
12648 |
12649 |
12650 |
φ(n) |
12640 |
3528 |
12328 |
6048 |
6720 |
6322 |
12646 |
3840 |
9936 |
4400 |
|
|
|
|
|
|
|
|
|
|
|
n |
12651 |
12652 |
12653 |
12654 |
12655 |
12656 |
12657 |
12658 |
12659 |
12660 |
φ(n) |
8432 |
6324 |
12652 |
3888 |
10120 |
5376 |
8436 |
6328 |
12658 |
3360 |
|
|
|
|
|
|
|
|
|
|
|
n |
12661 |
12662 |
12663 |
12664 |
12665 |
12666 |
12667 |
12668 |
12669 |
12670 |
φ(n) |
11500 |
5832 |
7128 |
6328 |
9472 |
4220 |
12376 |
6332 |
8160 |
4320 |
|
|
|
|
|
|
|
|
|
|
|
n |
12671 |
12672 |
12673 |
12674 |
12675 |
12676 |
12677 |
12678 |
12679 |
12680 |
φ(n) |
12670 |
3840 |
11088 |
6336 |
6240 |
6336 |
10860 |
4224 |
12240 |
5056 |
|
|
|
|
|
|
|
|
|
|
|
n |
12681 |
12682 |
12683 |
12684 |
12685 |
12686 |
12687 |
12688 |
12689 |
12690 |
φ(n) |
8448 |
5952 |
11520 |
3600 |
9744 |
6342 |
8456 |
5760 |
12688 |
3312 |
|
|
|
|
|
|
|
|
|
|
|
n |
12691 |
12692 |
12693 |
12694 |
12695 |
12696 |
12697 |
12698 |
12699 |
12700 |
φ(n) |
10584 |
5976 |
8460 |
5760 |
10152 |
4048 |
12696 |
5436 |
7872 |
5040 |
|
|
|
|
|
|
|
|
|
|
|
n |
12701 |
12702 |
12703 |
12704 |
12705 |
12706 |
12707 |
12708 |
12709 |
12710 |
φ(n) |
11712 |
4032 |
12702 |
6336 |
5280 |
6352 |
12480 |
4224 |
12460 |
4800 |
|
|
|
|
|
|
|
|
|
|
|
n |
12711 |
12712 |
12713 |
12714 |
12715 |
12716 |
12717 |
12718 |
12719 |
12720 |
φ(n) |
7992 |
5424 |
12712 |
3888 |
10168 |
5440 |
8424 |
6358 |
10296 |
3328 |
|
|
|
|
|
|
|
|
|
|
|
n |
12721 |
12722 |
12723 |
12724 |
12725 |
12726 |
12727 |
12728 |
12729 |
12730 |
φ(n) |
12720 |
6360 |
8480 |
6360 |
10160 |
3600 |
10560 |
6048 |
8484 |
4752 |
|
|
|
|
|
|
|
|
|
|
|
n |
12731 |
12732 |
12733 |
12734 |
12735 |
12736 |
12737 |
12738 |
12739 |
12740 |
φ(n) |
12264 |
4240 |
10176 |
6366 |
6768 |
6336 |
12420 |
3840 |
12738 |
4032 |
|
|
|
|
|
|
|
|
|
|
|
n |
12741 |
12742 |
12743 |
12744 |
12745 |
12746 |
12747 |
12748 |
12749 |
12750 |
φ(n) |
8160 |
6072 |
12742 |
4176 |
10192 |
6372 |
7272 |
6372 |
10800 |
3200 |
|
|
|
|
|
|
|
|
|
|
|
n |
12751 |
12752 |
12753 |
12754 |
12755 |
12756 |
12757 |
12758 |
12759 |
12760 |
φ(n) |
12400 |
6368 |
7776 |
5460 |
10200 |
4248 |
12756 |
6378 |
8504 |
4480 |
|
|
|
|
|
|
|
|
|
|
|
n |
12761 |
12762 |
12763 |
12764 |
12765 |
12766 |
12767 |
12768 |
12769 |
12770 |
φ(n) |
10932 |
4248 |
12762 |
6380 |
6336 |
5880 |
12000 |
3456 |
12656 |
5104 |
|
|
|
|
|
|
|
|
|
|
|
n |
12771 |
12772 |
12773 |
12774 |
12775 |
12776 |
12777 |
12778 |
12779 |
12780 |
φ(n) |
7560 |
6120 |
12480 |
4256 |
8640 |
6384 |
8516 |
6388 |
11784 |
3360 |
|
|
|
|
|
|
|
|
|
|
|
n |
12781 |
12782 |
12783 |
12784 |
12785 |
12786 |
12787 |
12788 |
12789 |
12790 |
φ(n) |
12780 |
4920 |
8520 |
5888 |
10224 |
4260 |
12096 |
6072 |
7056 |
5112 |
|
|
|
|
|
|
|
|
|
|
|
n |
12791 |
12792 |
12793 |
12794 |
12795 |
12796 |
12797 |
12798 |
12799 |
12800 |
φ(n) |
12790 |
3840 |
11620 |
6396 |
6816 |
5472 |
12540 |
4212 |
12798 |
5120 |
|
|
|
|
|
|
|
|
|
|
|
n |
12801 |
12802 |
12803 |
12804 |
12805 |
12806 |
12807 |
12808 |
12809 |
12810 |
φ(n) |
8000 |
6192 |
10440 |
3840 |
9408 |
6048 |
8532 |
6400 |
12808 |
2880 |
|
|
|
|
|
|
|
|
|
|
|
n |
12811 |
12812 |
12813 |
12814 |
12815 |
12816 |
12817 |
12818 |
12819 |
12820 |
φ(n) |
12232 |
6404 |
8540 |
6216 |
9280 |
4224 |
10980 |
5376 |
8544 |
5120 |
|
|
|
|
|
|
|
|
|
|
|
n |
12821 |
12822 |
12823 |
12824 |
12825 |
12826 |
12827 |
12828 |
12829 |
12830 |
φ(n) |
12820 |
4272 |
12822 |
5472 |
6480 |
5720 |
12600 |
4272 |
12828 |
5128 |
|
|
|
|
|
|
|
|
|
|
|
n |
12831 |
12832 |
12833 |
12834 |
12835 |
12836 |
12837 |
12838 |
12839 |
12840 |
φ(n) |
6624 |
6400 |
12480 |
3960 |
9600 |
6416 |
7760 |
5460 |
12456 |
3392 |
|
|
|
|
|
|
|
|
|
|
|
n |
12841 |
12842 |
12843 |
12844 |
12845 |
12846 |
12847 |
12848 |
12849 |
12850 |
φ(n) |
12840 |
6420 |
8556 |
5616 |
8784 |
4280 |
12376 |
5760 |
8564 |
5120 |
|
|
|
|
|
|
|
|
|
|
|
n |
12851 |
12852 |
12853 |
12854 |
12855 |
12856 |
12857 |
12858 |
12859 |
12860 |
φ(n) |
12600 |
3456 |
12852 |
6426 |
6848 |
6424 |
11088 |
4284 |
9960 |
5136 |
|
|
|
|
|
|
|
|
|
|
|
n |
12861 |
12862 |
12863 |
12864 |
12865 |
12866 |
12867 |
12868 |
12869 |
12870 |
φ(n) |
8568 |
6264 |
12168 |
4224 |
9840 |
5508 |
8576 |
6432 |
12096 |
2880 |
|
|
|
|
|
|
|
|
|
|
|
n |
12871 |
12872 |
12873 |
12874 |
12875 |
12876 |
12877 |
12878 |
12879 |
12880 |
φ(n) |
12600 |
6432 |
7344 |
6240 |
10200 |
4032 |
12636 |
6256 |
8424 |
4224 |
|
|
|
|
|
|
|
|
|
|
|
n |
12881 |
12882 |
12883 |
12884 |
12885 |
12886 |
12887 |
12888 |
12889 |
12890 |
φ(n) |
11700 |
4032 |
11880 |
6440 |
6864 |
6048 |
11004 |
4272 |
12888 |
5152 |
|
|
|
|
|
|
|
|
|
|
|
n |
12891 |
12892 |
12893 |
12894 |
12895 |
12896 |
12897 |
12898 |
12899 |
12900 |
φ(n) |
8592 |
5840 |
12892 |
3672 |
10312 |
5760 |
8592 |
6448 |
12898 |
3360 |
|
|
|
|
|
|
|
|
|
|
|
n |
12901 |
12902 |
12903 |
12904 |
12905 |
12906 |
12907 |
12908 |
12909 |
12910 |
φ(n) |
10368 |
6450 |
7040 |
6448 |
9856 |
4284 |
12906 |
5520 |
7920 |
5160 |
|
|
|
|
|
|
|
|
|
|
|
n |
12911 |
12912 |
12913 |
12914 |
12915 |
12916 |
12917 |
12918 |
12919 |
12920 |
φ(n) |
12910 |
4288 |
12528 |
5860 |
5760 |
6456 |
12916 |
4304 |
12918 |
4608 |
|
|
|
|
|
|
|
|
|
|
|
n |
12921 |
12922 |
12923 |
12924 |
12925 |
12926 |
12927 |
12928 |
12929 |
12930 |
φ(n) |
8352 |
5040 |
12922 |
4296 |
9200 |
6160 |
8280 |
6400 |
11076 |
3440 |
|
|
|
|
|
|
|
|
|
|
|
n |
12931 |
12932 |
12933 |
12934 |
12935 |
12936 |
12937 |
12938 |
12939 |
12940 |
φ(n) |
12672 |
6240 |
8604 |
6216 |
9504 |
3360 |
12160 |
6468 |
8136 |
5168 |
|
|
|
|
|
|
|
|
|
|
|
n |
12941 |
12942 |
12943 |
12944 |
12945 |
12946 |
12947 |
12948 |
12949 |
12950 |
φ(n) |
12940 |
4308 |
10836 |
6464 |
6896 |
6472 |
11660 |
3936 |
12364 |
4320 |
|
|
|
|
|
|
|
|
|
|
|
n |
12951 |
12952 |
12953 |
12954 |
12955 |
12956 |
12957 |
12958 |
12959 |
12960 |
φ(n) |
8628 |
6472 |
12952 |
4032 |
10360 |
6240 |
7392 |
5400 |
12958 |
3456 |
|
|
|
|
|
|
|
|
|
|
|
n |
12961 |
12962 |
12963 |
12964 |
12965 |
12966 |
12967 |
12968 |
12969 |
12970 |
φ(n) |
11952 |
6480 |
8288 |
5544 |
10368 |
4320 |
12966 |
6480 |
7800 |
5184 |
|
|
|
|
|
|
|
|
|
|
|
n |
12971 |
12972 |
12973 |
12974 |
12975 |
12976 |
12977 |
12978 |
12979 |
12980 |
φ(n) |
10368 |
4048 |
12972 |
5976 |
6880 |
6480 |
12276 |
3672 |
12978 |
4640 |
|
|
|
|
|
|
|
|
|
|
|
n |
12981 |
12982 |
12983 |
12984 |
12985 |
12986 |
12987 |
12988 |
12989 |
12990 |
φ(n) |
8652 |
6490 |
12982 |
4320 |
8736 |
6300 |
7776 |
6080 |
12540 |
3456 |
|
|
|
|
|
|
|
|
|
|
|
n |
12991 |
12992 |
12993 |
12994 |
12995 |
12996 |
12997 |
12998 |
12999 |
13000 |
φ(n) |
11800 |
5376 |
8400 |
6336 |
9856 |
4104 |
12640 |
6336 |
7416 |
4800 |
|
|
|
|
|
|
|
|
|
|
|
J.P. Martin-Flatin