﻿ ]> Continued Fraction Expansions of Square Roots for n = 2..1000

# Continued Fraction Expansions of Square Roots for n = 2..1000

Note: This page uses MathML. To view it properly, you need a MathML-enabled browser. You may also have to install some fonts.

The square root of any natural number n can be expressed in the form of a continued fraction. When n is a perfect square, its continued fraction expansion is trivial. But when it is not a perfect square, its continued fraction expansion is both infinite and periodic. We are interested in the latter here.

 $\sqrt{2}=\left[1;\stackrel{_}{2}\right]$ $\sqrt{3}=\left[1;\stackrel{_}{1,2}\right]$ $\sqrt{5}=\left[2;\stackrel{_}{4}\right]$ $\sqrt{6}=\left[2;\stackrel{_}{2,4}\right]$ $\sqrt{7}=\left[2;\stackrel{_}{1,1,1,4}\right]$ $\sqrt{8}=\left[2;\stackrel{_}{1,4}\right]$ $\sqrt{10}=\left[3;\stackrel{_}{6}\right]$ $\sqrt{11}=\left[3;\stackrel{_}{3,6}\right]$ $\sqrt{12}=\left[3;\stackrel{_}{2,6}\right]$ $\sqrt{13}=\left[3;\stackrel{_}{1,1,1,1,6}\right]$ $\sqrt{14}=\left[3;\stackrel{_}{1,2,1,6}\right]$ $\sqrt{15}=\left[3;\stackrel{_}{1,6}\right]$ $\sqrt{17}=\left[4;\stackrel{_}{8}\right]$ $\sqrt{18}=\left[4;\stackrel{_}{4,8}\right]$ $\sqrt{19}=\left[4;\stackrel{_}{2,1,3,1,2,8}\right]$ $\sqrt{20}=\left[4;\stackrel{_}{2,8}\right]$ $\sqrt{21}=\left[4;\stackrel{_}{1,1,2,1,1,8}\right]$ $\sqrt{22}=\left[4;\stackrel{_}{1,2,4,2,1,8}\right]$ $\sqrt{23}=\left[4;\stackrel{_}{1,3,1,8}\right]$ $\sqrt{24}=\left[4;\stackrel{_}{1,8}\right]$ $\sqrt{26}=\left[5;\stackrel{_}{10}\right]$ $\sqrt{27}=\left[5;\stackrel{_}{5,10}\right]$ $\sqrt{28}=\left[5;\stackrel{_}{3,2,3,10}\right]$ $\sqrt{29}=\left[5;\stackrel{_}{2,1,1,2,10}\right]$ $\sqrt{30}=\left[5;\stackrel{_}{2,10}\right]$ $\sqrt{31}=\left[5;\stackrel{_}{1,1,3,5,3,1,1,10}\right]$ $\sqrt{32}=\left[5;\stackrel{_}{1,1,1,10}\right]$ $\sqrt{33}=\left[5;\stackrel{_}{1,2,1,10}\right]$ $\sqrt{34}=\left[5;\stackrel{_}{1,4,1,10}\right]$ $\sqrt{35}=\left[5;\stackrel{_}{1,10}\right]$ $\sqrt{37}=\left[6;\stackrel{_}{12}\right]$ $\sqrt{38}=\left[6;\stackrel{_}{6,12}\right]$ $\sqrt{39}=\left[6;\stackrel{_}{4,12}\right]$ $\sqrt{40}=\left[6;\stackrel{_}{3,12}\right]$ $\sqrt{41}=\left[6;\stackrel{_}{2,2,12}\right]$ $\sqrt{42}=\left[6;\stackrel{_}{2,12}\right]$ $\sqrt{43}=\left[6;\stackrel{_}{1,1,3,1,5,1,3,1,1,12}\right]$ $\sqrt{44}=\left[6;\stackrel{_}{1,1,1,2,1,1,1,12}\right]$ $\sqrt{45}=\left[6;\stackrel{_}{1,2,2,2,1,12}\right]$ $\sqrt{46}=\left[6;\stackrel{_}{1,3,1,1,2,6,2,1,1,3,1,12}\right]$ $\sqrt{47}=\left[6;\stackrel{_}{1,5,1,12}\right]$ $\sqrt{48}=\left[6;\stackrel{_}{1,12}\right]$ $\sqrt{50}=\left[7;\stackrel{_}{14}\right]$ $\sqrt{51}=\left[7;\stackrel{_}{7,14}\right]$ $\sqrt{52}=\left[7;\stackrel{_}{4,1,2,1,4,14}\right]$ $\sqrt{53}=\left[7;\stackrel{_}{3,1,1,3,14}\right]$ $\sqrt{54}=\left[7;\stackrel{_}{2,1,6,1,2,14}\right]$ $\sqrt{55}=\left[7;\stackrel{_}{2,2,2,14}\right]$ $\sqrt{56}=\left[7;\stackrel{_}{2,14}\right]$ $\sqrt{57}=\left[7;\stackrel{_}{1,1,4,1,1,14}\right]$ $\sqrt{58}=\left[7;\stackrel{_}{1,1,1,1,1,1,14}\right]$ $\sqrt{59}=\left[7;\stackrel{_}{1,2,7,2,1,14}\right]$ $\sqrt{60}=\left[7;\stackrel{_}{1,2,1,14}\right]$ $\sqrt{61}=\left[7;\stackrel{_}{1,4,3,1,2,2,1,3,4,1,14}\right]$ $\sqrt{62}=\left[7;\stackrel{_}{1,6,1,14}\right]$ $\sqrt{63}=\left[7;\stackrel{_}{1,14}\right]$ $\sqrt{65}=\left[8;\stackrel{_}{16}\right]$ $\sqrt{66}=\left[8;\stackrel{_}{8,16}\right]$ $\sqrt{67}=\left[8;\stackrel{_}{5,2,1,1,7,1,1,2,5,16}\right]$ $\sqrt{68}=\left[8;\stackrel{_}{4,16}\right]$ $\sqrt{69}=\left[8;\stackrel{_}{3,3,1,4,1,3,3,16}\right]$ $\sqrt{70}=\left[8;\stackrel{_}{2,1,2,1,2,16}\right]$ $\sqrt{71}=\left[8;\stackrel{_}{2,2,1,7,1,2,2,16}\right]$ $\sqrt{72}=\left[8;\stackrel{_}{2,16}\right]$ $\sqrt{73}=\left[8;\stackrel{_}{1,1,5,5,1,1,16}\right]$ $\sqrt{74}=\left[8;\stackrel{_}{1,1,1,1,16}\right]$ $\sqrt{75}=\left[8;\stackrel{_}{1,1,1,16}\right]$ $\sqrt{76}=\left[8;\stackrel{_}{1,2,1,1,5,4,5,1,1,2,1,16}\right]$ $\sqrt{77}=\left[8;\stackrel{_}{1,3,2,3,1,16}\right]$ $\sqrt{78}=\left[8;\stackrel{_}{1,4,1,16}\right]$ $\sqrt{79}=\left[8;\stackrel{_}{1,7,1,16}\right]$ $\sqrt{80}=\left[8;\stackrel{_}{1,16}\right]$ $\sqrt{82}=\left[9;\stackrel{_}{18}\right]$ $\sqrt{83}=\left[9;\stackrel{_}{9,18}\right]$ $\sqrt{84}=\left[9;\stackrel{_}{6,18}\right]$ $\sqrt{85}=\left[9;\stackrel{_}{4,1,1,4,18}\right]$ $\sqrt{86}=\left[9;\stackrel{_}{3,1,1,1,8,1,1,1,3,18}\right]$ $\sqrt{87}=\left[9;\stackrel{_}{3,18}\right]$ $\sqrt{88}=\left[9;\stackrel{_}{2,1,1,1,2,18}\right]$ $\sqrt{89}=\left[9;\stackrel{_}{2,3,3,2,18}\right]$ $\sqrt{90}=\left[9;\stackrel{_}{2,18}\right]$ $\sqrt{91}=\left[9;\stackrel{_}{1,1,5,1,5,1,1,18}\right]$ $\sqrt{92}=\left[9;\stackrel{_}{1,1,2,4,2,1,1,18}\right]$ $\sqrt{93}=\left[9;\stackrel{_}{1,1,1,4,6,4,1,1,1,18}\right]$ $\sqrt{94}=\left[9;\stackrel{_}{1,2,3,1,1,5,1,8,1,5,1,1,3,2,1,18}\right]$ $\sqrt{95}=\left[9;\stackrel{_}{1,2,1,18}\right]$ $\sqrt{96}=\left[9;\stackrel{_}{1,3,1,18}\right]$ $\sqrt{97}=\left[9;\stackrel{_}{1,5,1,1,1,1,1,1,5,1,18}\right]$ $\sqrt{98}=\left[9;\stackrel{_}{1,8,1,18}\right]$ $\sqrt{99}=\left[9;\stackrel{_}{1,18}\right]$ $\sqrt{101}=\left[10;\stackrel{_}{20}\right]$ $\sqrt{102}=\left[10;\stackrel{_}{10,20}\right]$ $\sqrt{103}=\left[10;\stackrel{_}{6,1,2,1,1,9,1,1,2,1,6,20}\right]$ $\sqrt{104}=\left[10;\stackrel{_}{5,20}\right]$ $\sqrt{105}=\left[10;\stackrel{_}{4,20}\right]$ $\sqrt{106}=\left[10;\stackrel{_}{3,2,1,1,1,1,2,3,20}\right]$ $\sqrt{107}=\left[10;\stackrel{_}{2,1,9,1,2,20}\right]$ $\sqrt{108}=\left[10;\stackrel{_}{2,1,1,4,1,1,2,20}\right]$ $\sqrt{109}=\left[10;\stackrel{_}{2,3,1,2,4,1,6,6,1,4,2,1,3,2,20}\right]$ $\sqrt{110}=\left[10;\stackrel{_}{2,20}\right]$ $\sqrt{111}=\left[10;\stackrel{_}{1,1,6,1,1,20}\right]$ $\sqrt{112}=\left[10;\stackrel{_}{1,1,2,1,1,20}\right]$ $\sqrt{113}=\left[10;\stackrel{_}{1,1,1,2,2,1,1,1,20}\right]$ $\sqrt{114}=\left[10;\stackrel{_}{1,2,10,2,1,20}\right]$ $\sqrt{115}=\left[10;\stackrel{_}{1,2,1,1,1,1,1,2,1,20}\right]$ $\sqrt{116}=\left[10;\stackrel{_}{1,3,2,1,4,1,2,3,1,20}\right]$ $\sqrt{117}=\left[10;\stackrel{_}{1,4,2,4,1,20}\right]$ $\sqrt{118}=\left[10;\stackrel{_}{1,6,3,2,10,2,3,6,1,20}\right]$ $\sqrt{119}=\left[10;\stackrel{_}{1,9,1,20}\right]$ $\sqrt{120}=\left[10;\stackrel{_}{1,20}\right]$ $\sqrt{122}=\left[11;\stackrel{_}{22}\right]$ $\sqrt{123}=\left[11;\stackrel{_}{11,22}\right]$ $\sqrt{124}=\left[11;\stackrel{_}{7,2,1,1,1,3,1,4,1,3,1,1,1,2,7,22}\right]$ $\sqrt{125}=\left[11;\stackrel{_}{5,1,1,5,22}\right]$ $\sqrt{126}=\left[11;\stackrel{_}{4,2,4,22}\right]$ $\sqrt{127}=\left[11;\stackrel{_}{3,1,2,2,7,11,7,2,2,1,3,22}\right]$ $\sqrt{128}=\left[11;\stackrel{_}{3,5,3,22}\right]$ $\sqrt{129}=\left[11;\stackrel{_}{2,1,3,1,6,1,3,1,2,22}\right]$ $\sqrt{130}=\left[11;\stackrel{_}{2,2,22}\right]$ $\sqrt{131}=\left[11;\stackrel{_}{2,4,11,4,2,22}\right]$ $\sqrt{132}=\left[11;\stackrel{_}{2,22}\right]$ $\sqrt{133}=\left[11;\stackrel{_}{1,1,7,5,1,1,1,2,1,1,1,5,7,1,1,22}\right]$ $\sqrt{134}=\left[11;\stackrel{_}{1,1,2,1,3,1,10,1,3,1,2,1,1,22}\right]$ $\sqrt{135}=\left[11;\stackrel{_}{1,1,1,1,1,1,1,22}\right]$ $\sqrt{136}=\left[11;\stackrel{_}{1,1,1,22}\right]$ $\sqrt{137}=\left[11;\stackrel{_}{1,2,2,1,1,2,2,1,22}\right]$ $\sqrt{138}=\left[11;\stackrel{_}{1,2,1,22}\right]$ $\sqrt{139}=\left[11;\stackrel{_}{1,3,1,3,7,1,1,2,11,2,1,1,7,3,1,3,1,22}\right]$ $\sqrt{140}=\left[11;\stackrel{_}{1,4,1,22}\right]$ $\sqrt{141}=\left[11;\stackrel{_}{1,6,1,22}\right]$ $\sqrt{142}=\left[11;\stackrel{_}{1,10,1,22}\right]$ $\sqrt{143}=\left[11;\stackrel{_}{1,22}\right]$ $\sqrt{145}=\left[12;\stackrel{_}{24}\right]$ $\sqrt{146}=\left[12;\stackrel{_}{12,24}\right]$ $\sqrt{147}=\left[12;\stackrel{_}{8,24}\right]$ $\sqrt{148}=\left[12;\stackrel{_}{6,24}\right]$ $\sqrt{149}=\left[12;\stackrel{_}{4,1,5,3,3,5,1,4,24}\right]$ $\sqrt{150}=\left[12;\stackrel{_}{4,24}\right]$ $\sqrt{151}=\left[12;\stackrel{_}{3,2,7,1,3,4,1,1,1,11,1,1,1,4,3,1,7,2,3,24}\right]$ $\sqrt{152}=\left[12;\stackrel{_}{3,24}\right]$ $\sqrt{153}=\left[12;\stackrel{_}{2,1,2,2,2,1,2,24}\right]$ $\sqrt{154}=\left[12;\stackrel{_}{2,2,3,1,2,1,3,2,2,24}\right]$ $\sqrt{155}=\left[12;\stackrel{_}{2,4,2,24}\right]$ $\sqrt{156}=\left[12;\stackrel{_}{2,24}\right]$ $\sqrt{157}=\left[12;\stackrel{_}{1,1,7,1,5,2,1,1,1,1,2,5,1,7,1,1,24}\right]$ $\sqrt{158}=\left[12;\stackrel{_}{1,1,3,12,3,1,1,24}\right]$ $\sqrt{159}=\left[12;\stackrel{_}{1,1,1,1,3,1,1,1,1,24}\right]$ $\sqrt{160}=\left[12;\stackrel{_}{1,1,1,5,1,1,1,24}\right]$ $\sqrt{161}=\left[12;\stackrel{_}{1,2,4,1,2,1,4,2,1,24}\right]$ $\sqrt{162}=\left[12;\stackrel{_}{1,2,1,2,12,2,1,2,1,24}\right]$ $\sqrt{163}=\left[12;\stackrel{_}{1,3,3,2,1,1,7,1,11,1,7,1,1,2,3,3,1,24}\right]$ $\sqrt{164}=\left[12;\stackrel{_}{1,4,6,4,1,24}\right]$ $\sqrt{165}=\left[12;\stackrel{_}{1,5,2,5,1,24}\right]$ $\sqrt{166}=\left[12;\stackrel{_}{1,7,1,1,1,2,4,1,3,2,12,2,3,1,4,2,1,1,1,7,1,24}\right]$ $\sqrt{167}=\left[12;\stackrel{_}{1,11,1,24}\right]$ $\sqrt{168}=\left[12;\stackrel{_}{1,24}\right]$ $\sqrt{170}=\left[13;\stackrel{_}{26}\right]$ $\sqrt{171}=\left[13;\stackrel{_}{13,26}\right]$ $\sqrt{172}=\left[13;\stackrel{_}{8,1,2,2,1,1,3,6,3,1,1,2,2,1,8,26}\right]$ $\sqrt{173}=\left[13;\stackrel{_}{6,1,1,6,26}\right]$ $\sqrt{174}=\left[13;\stackrel{_}{5,4,5,26}\right]$ $\sqrt{175}=\left[13;\stackrel{_}{4,2,1,2,4,26}\right]$ $\sqrt{176}=\left[13;\stackrel{_}{3,1,3,26}\right]$ $\sqrt{177}=\left[13;\stackrel{_}{3,3,2,8,2,3,3,26}\right]$ $\sqrt{178}=\left[13;\stackrel{_}{2,1,12,1,2,26}\right]$ $\sqrt{179}=\left[13;\stackrel{_}{2,1,1,1,3,5,13,5,3,1,1,1,2,26}\right]$ $\sqrt{180}=\left[13;\stackrel{_}{2,2,2,26}\right]$ $\sqrt{181}=\left[13;\stackrel{_}{2,4,1,8,6,1,1,1,1,2,2,1,1,1,1,6,8,1,4,2,26}\right]$ $\sqrt{182}=\left[13;\stackrel{_}{2,26}\right]$ $\sqrt{183}=\left[13;\stackrel{_}{1,1,8,1,1,26}\right]$ $\sqrt{184}=\left[13;\stackrel{_}{1,1,3,2,1,2,1,2,3,1,1,26}\right]$ $\sqrt{185}=\left[13;\stackrel{_}{1,1,1,1,26}\right]$ $\sqrt{186}=\left[13;\stackrel{_}{1,1,1,3,4,3,1,1,1,26}\right]$ $\sqrt{187}=\left[13;\stackrel{_}{1,2,13,2,1,26}\right]$ $\sqrt{188}=\left[13;\stackrel{_}{1,2,2,6,2,2,1,26}\right]$ $\sqrt{189}=\left[13;\stackrel{_}{1,2,1,26}\right]$ $\sqrt{190}=\left[13;\stackrel{_}{1,3,1,1,1,2,2,2,1,1,1,3,1,26}\right]$ $\sqrt{191}=\left[13;\stackrel{_}{1,4,1,1,3,2,2,13,2,2,3,1,1,4,1,26}\right]$ $\sqrt{192}=\left[13;\stackrel{_}{1,5,1,26}\right]$ $\sqrt{193}=\left[13;\stackrel{_}{1,8,3,2,1,3,3,1,2,3,8,1,26}\right]$ $\sqrt{194}=\left[13;\stackrel{_}{1,12,1,26}\right]$ $\sqrt{195}=\left[13;\stackrel{_}{1,26}\right]$ $\sqrt{197}=\left[14;\stackrel{_}{28}\right]$ $\sqrt{198}=\left[14;\stackrel{_}{14,28}\right]$ $\sqrt{199}=\left[14;\stackrel{_}{9,2,1,2,2,5,4,1,1,13,1,1,4,5,2,2,1,2,9,28}\right]$ $\sqrt{200}=\left[14;\stackrel{_}{7,28}\right]$ $\sqrt{201}=\left[14;\stackrel{_}{5,1,1,1,2,1,8,1,2,1,1,1,5,28}\right]$ $\sqrt{202}=\left[14;\stackrel{_}{4,1,2,2,1,4,28}\right]$ $\sqrt{203}=\left[14;\stackrel{_}{4,28}\right]$ $\sqrt{204}=\left[14;\stackrel{_}{3,1,1,6,1,1,3,28}\right]$ $\sqrt{205}=\left[14;\stackrel{_}{3,6,1,4,1,6,3,28}\right]$ $\sqrt{206}=\left[14;\stackrel{_}{2,1,5,14,5,1,2,28}\right]$ $\sqrt{207}=\left[14;\stackrel{_}{2,1,1,2,1,1,2,28}\right]$ $\sqrt{208}=\left[14;\stackrel{_}{2,2,1,2,2,28}\right]$ $\sqrt{209}=\left[14;\stackrel{_}{2,5,3,2,3,5,2,28}\right]$ $\sqrt{210}=\left[14;\stackrel{_}{2,28}\right]$ $\sqrt{211}=\left[14;\stackrel{_}{1,1,9,5,1,2,2,1,1,4,3,1,13,1,3,4,1,1,2,2,1,5,9,1,1,28}\right]$ $\sqrt{212}=\left[14;\stackrel{_}{1,1,3,1,1,1,6,1,1,1,3,1,1,28}\right]$ $\sqrt{213}=\left[14;\stackrel{_}{1,1,2,6,1,8,1,6,2,1,1,28}\right]$ $\sqrt{214}=\left[14;\stackrel{_}{1,1,1,2,3,1,4,9,1,1,5,3,14,3,5,1,1,9,4,1,3,2,1,1,1,28}\right]$ $\sqrt{215}=\left[14;\stackrel{_}{1,1,1,28}\right]$ $\sqrt{216}=\left[14;\stackrel{_}{1,2,3,2,1,28}\right]$ $\sqrt{217}=\left[14;\stackrel{_}{1,2,1,2,1,1,9,4,9,1,1,2,1,2,1,28}\right]$ $\sqrt{218}=\left[14;\stackrel{_}{1,3,3,1,28}\right]$ $\sqrt{219}=\left[14;\stackrel{_}{1,3,1,28}\right]$ $\sqrt{220}=\left[14;\stackrel{_}{1,4,1,28}\right]$ $\sqrt{221}=\left[14;\stackrel{_}{1,6,2,6,1,28}\right]$ $\sqrt{222}=\left[14;\stackrel{_}{1,8,1,28}\right]$ $\sqrt{223}=\left[14;\stackrel{_}{1,13,1,28}\right]$ $\sqrt{224}=\left[14;\stackrel{_}{1,28}\right]$ $\sqrt{226}=\left[15;\stackrel{_}{30}\right]$ $\sqrt{227}=\left[15;\stackrel{_}{15,30}\right]$ $\sqrt{228}=\left[15;\stackrel{_}{10,30}\right]$ $\sqrt{229}=\left[15;\stackrel{_}{7,1,1,7,30}\right]$ $\sqrt{230}=\left[15;\stackrel{_}{6,30}\right]$ $\sqrt{231}=\left[15;\stackrel{_}{5,30}\right]$ $\sqrt{232}=\left[15;\stackrel{_}{4,3,7,3,4,30}\right]$ $\sqrt{233}=\left[15;\stackrel{_}{3,1,3,1,1,1,1,3,1,3,30}\right]$ $\sqrt{234}=\left[15;\stackrel{_}{3,2,1,2,1,2,3,30}\right]$ $\sqrt{235}=\left[15;\stackrel{_}{3,30}\right]$ $\sqrt{236}=\left[15;\stackrel{_}{2,1,3,5,1,6,1,5,3,1,2,30}\right]$ $\sqrt{237}=\left[15;\stackrel{_}{2,1,1,7,10,7,1,1,2,30}\right]$ $\sqrt{238}=\left[15;\stackrel{_}{2,2,1,14,1,2,2,30}\right]$ $\sqrt{239}=\left[15;\stackrel{_}{2,5,1,2,4,15,4,2,1,5,2,30}\right]$ $\sqrt{240}=\left[15;\stackrel{_}{2,30}\right]$ $\sqrt{241}=\left[15;\stackrel{_}{1,1,9,1,5,3,3,1,1,3,3,5,1,9,1,1,30}\right]$ $\sqrt{242}=\left[15;\stackrel{_}{1,1,3,1,14,1,3,1,1,30}\right]$ $\sqrt{243}=\left[15;\stackrel{_}{1,1,2,3,15,3,2,1,1,30}\right]$ $\sqrt{244}=\left[15;\stackrel{_}{1,1,1,1,1,2,1,5,1,1,9,1,6,1,9,1,1,5,1,2,1,1,1,1,1,30}\right]$ $\sqrt{245}=\left[15;\stackrel{_}{1,1,1,7,6,7,1,1,1,30}\right]$ $\sqrt{246}=\left[15;\stackrel{_}{1,2,5,1,14,1,5,2,1,30}\right]$ $\sqrt{247}=\left[15;\stackrel{_}{1,2,1,1,9,1,9,1,1,2,1,30}\right]$ $\sqrt{248}=\left[15;\stackrel{_}{1,2,1,30}\right]$ $\sqrt{249}=\left[15;\stackrel{_}{1,3,1,1,5,1,3,10,3,1,5,1,1,3,1,30}\right]$ $\sqrt{250}=\left[15;\stackrel{_}{1,4,3,3,4,1,30}\right]$ $\sqrt{251}=\left[15;\stackrel{_}{1,5,2,1,2,2,15,2,2,1,2,5,1,30}\right]$ $\sqrt{252}=\left[15;\stackrel{_}{1,6,1,30}\right]$ $\sqrt{253}=\left[15;\stackrel{_}{1,9,1,1,1,2,1,7,4,2,2,2,4,7,1,2,1,1,1,9,1,30}\right]$ $\sqrt{254}=\left[15;\stackrel{_}{1,14,1,30}\right]$ $\sqrt{255}=\left[15;\stackrel{_}{1,30}\right]$ $\sqrt{257}=\left[16;\stackrel{_}{32}\right]$ $\sqrt{258}=\left[16;\stackrel{_}{16,32}\right]$ $\sqrt{259}=\left[16;\stackrel{_}{10,1,2,3,4,3,2,1,10,32}\right]$ $\sqrt{260}=\left[16;\stackrel{_}{8,32}\right]$ $\sqrt{261}=\left[16;\stackrel{_}{6,2,3,7,1,3,1,2,1,3,1,7,3,2,6,32}\right]$ $\sqrt{262}=\left[16;\stackrel{_}{5,2,1,2,1,10,16,10,1,2,1,2,5,32}\right]$ $\sqrt{263}=\left[16;\stackrel{_}{4,1,1,1,1,15,1,1,1,1,4,32}\right]$ $\sqrt{264}=\left[16;\stackrel{_}{4,32}\right]$ $\sqrt{265}=\left[16;\stackrel{_}{3,1,1,2,2,1,1,3,32}\right]$ $\sqrt{266}=\left[16;\stackrel{_}{3,4,3,32}\right]$ $\sqrt{267}=\left[16;\stackrel{_}{2,1,15,1,2,32}\right]$ $\sqrt{268}=\left[16;\stackrel{_}{2,1,2,3,3,1,3,1,10,8,10,1,3,1,3,3,2,1,2,32}\right]$ $\sqrt{269}=\left[16;\stackrel{_}{2,2,32}\right]$ $\sqrt{270}=\left[16;\stackrel{_}{2,3,6,3,2,32}\right]$ $\sqrt{271}=\left[16;\stackrel{_}{2,6,10,1,4,1,1,2,1,2,1,15,1,2,1,2,1,1,4,1,10,6,2,32}\right]$ $\sqrt{272}=\left[16;\stackrel{_}{2,32}\right]$ $\sqrt{273}=\left[16;\stackrel{_}{1,1,10,1,1,32}\right]$ $\sqrt{274}=\left[16;\stackrel{_}{1,1,4,4,1,1,32}\right]$ $\sqrt{275}=\left[16;\stackrel{_}{1,1,2,1,1,32}\right]$ $\sqrt{276}=\left[16;\stackrel{_}{1,1,1,1,2,2,2,1,1,1,1,32}\right]$ $\sqrt{277}=\left[16;\stackrel{_}{1,1,1,4,10,1,7,2,2,3,3,2,2,7,1,10,4,1,1,1,32}\right]$ $\sqrt{278}=\left[16;\stackrel{_}{1,2,16,2,1,32}\right]$ $\sqrt{279}=\left[16;\stackrel{_}{1,2,2,1,2,2,1,32}\right]$ $\sqrt{280}=\left[16;\stackrel{_}{1,2,1,2,1,32}\right]$ $\sqrt{281}=\left[16;\stackrel{_}{1,3,4,1,1,6,6,1,1,4,3,1,32}\right]$ $\sqrt{282}=\left[16;\stackrel{_}{1,3,1,4,1,3,1,32}\right]$ $\sqrt{283}=\left[16;\stackrel{_}{1,4,1,1,1,3,10,1,15,1,10,3,1,1,1,4,1,32}\right]$ $\sqrt{284}=\left[16;\stackrel{_}{1,5,1,3,2,1,4,8,4,1,2,3,1,5,1,32}\right]$ $\sqrt{285}=\left[16;\stackrel{_}{1,7,2,7,1,32}\right]$ $\sqrt{286}=\left[16;\stackrel{_}{1,10,3,3,2,3,3,10,1,32}\right]$ $\sqrt{287}=\left[16;\stackrel{_}{1,15,1,32}\right]$ $\sqrt{288}=\left[16;\stackrel{_}{1,32}\right]$ $\sqrt{290}=\left[17;\stackrel{_}{34}\right]$ $\sqrt{291}=\left[17;\stackrel{_}{17,34}\right]$ $\sqrt{292}=\left[17;\stackrel{_}{11,2,1,3,8,3,1,2,11,34}\right]$ $\sqrt{293}=\left[17;\stackrel{_}{8,1,1,8,34}\right]$ $\sqrt{294}=\left[17;\stackrel{_}{6,1,4,1,6,34}\right]$ $\sqrt{295}=\left[17;\stackrel{_}{5,1,2,3,2,6,2,3,2,1,5,34}\right]$ $\sqrt{296}=\left[17;\stackrel{_}{4,1,7,1,4,34}\right]$ $\sqrt{297}=\left[17;\stackrel{_}{4,3,1,1,2,1,1,3,4,34}\right]$ $\sqrt{298}=\left[17;\stackrel{_}{3,1,4,5,1,1,5,4,1,3,34}\right]$ $\sqrt{299}=\left[17;\stackrel{_}{3,2,3,34}\right]$ $\sqrt{300}=\left[17;\stackrel{_}{3,8,3,34}\right]$ $\sqrt{301}=\left[17;\stackrel{_}{2,1,6,3,1,2,2,1,1,8,11,2,4,2,11,8,1,1,2,2,1,3,6,1,2,34}\right]$ $\sqrt{302}=\left[17;\stackrel{_}{2,1,1,1,4,2,1,16,1,2,4,1,1,1,2,34}\right]$ $\sqrt{303}=\left[17;\stackrel{_}{2,2,5,2,2,34}\right]$ $\sqrt{304}=\left[17;\stackrel{_}{2,3,2,1,1,1,1,1,2,3,2,34}\right]$ $\sqrt{305}=\left[17;\stackrel{_}{2,6,2,34}\right]$ $\sqrt{306}=\left[17;\stackrel{_}{2,34}\right]$ $\sqrt{307}=\left[17;\stackrel{_}{1,1,11,5,1,3,17,3,1,5,11,1,1,34}\right]$ $\sqrt{308}=\left[17;\stackrel{_}{1,1,4,1,1,34}\right]$ $\sqrt{309}=\left[17;\stackrel{_}{1,1,2,1,2,4,1,1,1,8,6,1,10,1,6,8,1,1,1,4,2,1,2,1,1,34}\right]$ $\sqrt{310}=\left[17;\stackrel{_}{1,1,1,1,5,3,1,2,1,3,5,1,1,1,1,34}\right]$ $\sqrt{311}=\left[17;\stackrel{_}{1,1,1,2,1,6,3,17,3,6,1,2,1,1,1,34}\right]$ $\sqrt{312}=\left[17;\stackrel{_}{1,1,1,34}\right]$ $\sqrt{313}=\left[17;\stackrel{_}{1,2,4,11,1,1,3,2,2,3,1,1,11,4,2,1,34}\right]$ $\sqrt{314}=\left[17;\stackrel{_}{1,2,1,1,2,1,34}\right]$ $\sqrt{315}=\left[17;\stackrel{_}{1,2,1,34}\right]$ $\sqrt{316}=\left[17;\stackrel{_}{1,3,2,8,2,3,1,34}\right]$ $\sqrt{317}=\left[17;\stackrel{_}{1,4,8,1,2,2,1,8,4,1,34}\right]$ $\sqrt{318}=\left[17;\stackrel{_}{1,4,1,34}\right]$ $\sqrt{319}=\left[17;\stackrel{_}{1,6,5,1,4,3,1,3,4,1,5,6,1,34}\right]$ $\sqrt{320}=\left[17;\stackrel{_}{1,7,1,34}\right]$ $\sqrt{321}=\left[17;\stackrel{_}{1,10,1,34}\right]$ $\sqrt{322}=\left[17;\stackrel{_}{1,16,1,34}\right]$ $\sqrt{323}=\left[17;\stackrel{_}{1,34}\right]$ $\sqrt{325}=\left[18;\stackrel{_}{36}\right]$ $\sqrt{326}=\left[18;\stackrel{_}{18,36}\right]$ $\sqrt{327}=\left[18;\stackrel{_}{12,36}\right]$ $\sqrt{328}=\left[18;\stackrel{_}{9,36}\right]$ $\sqrt{329}=\left[18;\stackrel{_}{7,4,2,1,1,4,1,1,2,4,7,36}\right]$ $\sqrt{330}=\left[18;\stackrel{_}{6,36}\right]$ $\sqrt{331}=\left[18;\stackrel{_}{5,5,1,6,2,3,1,1,2,1,2,1,11,2,1,1,17,1,1,2,11,1,2,1,2,1,1,3,2,6,1,5,5,36}\right]$ $\sqrt{332}=\left[18;\stackrel{_}{4,1,1,8,1,1,4,36}\right]$ $\sqrt{333}=\left[18;\stackrel{_}{4,36}\right]$ $\sqrt{334}=\left[18;\stackrel{_}{3,1,1,1,2,5,1,2,2,11,1,3,7,18,7,3,1,11,2,2,1,5,2,1,1,1,3,36}\right]$ $\sqrt{335}=\left[18;\stackrel{_}{3,3,3,36}\right]$ $\sqrt{336}=\left[18;\stackrel{_}{3,36}\right]$ $\sqrt{337}=\left[18;\stackrel{_}{2,1,3,1,11,2,4,1,3,3,1,4,2,11,1,3,1,2,36}\right]$ $\sqrt{338}=\left[18;\stackrel{_}{2,1,1,2,36}\right]$ $\sqrt{339}=\left[18;\stackrel{_}{2,2,2,1,17,1,2,2,2,36}\right]$ $\sqrt{340}=\left[18;\stackrel{_}{2,3,1,1,1,1,8,1,1,1,1,3,2,36}\right]$ $\sqrt{341}=\left[18;\stackrel{_}{2,6,1,8,2,1,2,1,2,8,1,6,2,36}\right]$ $\sqrt{342}=\left[18;\stackrel{_}{2,36}\right]$ $\sqrt{343}=\left[18;\stackrel{_}{1,1,11,1,5,3,1,17,1,3,5,1,11,1,1,36}\right]$ $\sqrt{344}=\left[18;\stackrel{_}{1,1,4,1,3,1,4,1,1,36}\right]$ $\sqrt{345}=\left[18;\stackrel{_}{1,1,2,1,6,1,2,1,1,36}\right]$ $\sqrt{346}=\left[18;\stackrel{_}{1,1,1,1,36}\right]$ $\sqrt{347}=\left[18;\stackrel{_}{1,1,1,2,4,1,17,1,4,2,1,1,1,36}\right]$ $\sqrt{348}=\left[18;\stackrel{_}{1,1,1,8,1,1,1,36}\right]$ $\sqrt{349}=\left[18;\stackrel{_}{1,2,7,7,2,1,36}\right]$ $\sqrt{350}=\left[18;\stackrel{_}{1,2,2,2,1,36}\right]$ $\sqrt{351}=\left[18;\stackrel{_}{1,2,1,3,2,2,2,3,1,2,1,36}\right]$ $\sqrt{352}=\left[18;\stackrel{_}{1,3,5,9,5,3,1,36}\right]$ $\sqrt{353}=\left[18;\stackrel{_}{1,3,1,2,1,1,1,1,1,1,2,1,3,1,36}\right]$ $\sqrt{354}=\left[18;\stackrel{_}{1,4,2,2,18,2,2,4,1,36}\right]$ $\sqrt{355}=\left[18;\stackrel{_}{1,5,3,3,1,6,1,3,3,5,1,36}\right]$ $\sqrt{356}=\left[18;\stackrel{_}{1,6,1,1,2,1,8,1,2,1,1,6,1,36}\right]$ $\sqrt{357}=\left[18;\stackrel{_}{1,8,2,8,1,36}\right]$ $\sqrt{358}=\left[18;\stackrel{_}{1,11,1,1,1,3,1,1,4,1,5,2,18,2,5,1,4,1,1,3,1,1,1,11,1,36}\right]$ $\sqrt{359}=\left[18;\stackrel{_}{1,17,1,36}\right]$ $\sqrt{360}=\left[18;\stackrel{_}{1,36}\right]$ $\sqrt{362}=\left[19;\stackrel{_}{38}\right]$ $\sqrt{363}=\left[19;\stackrel{_}{19,38}\right]$ $\sqrt{364}=\left[19;\stackrel{_}{12,1,2,3,1,8,1,3,2,1,12,38}\right]$ $\sqrt{365}=\left[19;\stackrel{_}{9,1,1,9,38}\right]$ $\sqrt{366}=\left[19;\stackrel{_}{7,1,1,1,2,12,2,1,1,1,7,38}\right]$ $\sqrt{367}=\left[19;\stackrel{_}{6,2,1,3,1,1,2,1,12,19,12,1,2,1,1,3,1,2,6,38}\right]$ $\sqrt{368}=\left[19;\stackrel{_}{5,2,5,38}\right]$ $\sqrt{369}=\left[19;\stackrel{_}{4,1,3,2,7,4,7,2,3,1,4,38}\right]$ $\sqrt{370}=\left[19;\stackrel{_}{4,4,38}\right]$ $\sqrt{371}=\left[19;\stackrel{_}{3,1,4,1,3,38}\right]$ $\sqrt{372}=\left[19;\stackrel{_}{3,2,12,2,3,38}\right]$ $\sqrt{373}=\left[19;\stackrel{_}{3,5,5,3,38}\right]$ $\sqrt{374}=\left[19;\stackrel{_}{2,1,18,1,2,38}\right]$ $\sqrt{375}=\left[19;\stackrel{_}{2,1,2,1,5,1,2,1,2,38}\right]$ $\sqrt{376}=\left[19;\stackrel{_}{2,1,1,3,1,2,2,4,2,2,1,3,1,1,2,38}\right]$ $\sqrt{377}=\left[19;\stackrel{_}{2,2,2,38}\right]$ $\sqrt{378}=\left[19;\stackrel{_}{2,3,1,4,1,3,2,38}\right]$ $\sqrt{379}=\left[19;\stackrel{_}{2,7,3,2,2,6,12,1,4,1,1,1,3,4,19,4,3,1,1,1,4,1,12,6,2,2,3,7,2,38}\right]$ $\sqrt{380}=\left[19;\stackrel{_}{2,38}\right]$ $\sqrt{381}=\left[19;\stackrel{_}{1,1,12,1,1,38}\right]$ $\sqrt{382}=\left[19;\stackrel{_}{1,1,5,12,1,5,1,1,2,3,1,18,1,3,2,1,1,5,1,12,5,1,1,38}\right]$ $\sqrt{383}=\left[19;\stackrel{_}{1,1,3,19,3,1,1,38}\right]$ $\sqrt{384}=\left[19;\stackrel{_}{1,1,2,9,2,1,1,38}\right]$ $\sqrt{385}=\left[19;\stackrel{_}{1,1,1,1,1,3,1,2,1,3,1,1,1,1,1,38}\right]$ $\sqrt{386}=\left[19;\stackrel{_}{1,1,1,4,1,18,1,4,1,1,1,38}\right]$ $\sqrt{387}=\left[19;\stackrel{_}{1,2,19,2,1,38}\right]$ $\sqrt{388}=\left[19;\stackrel{_}{1,2,3,4,12,1,8,1,12,4,3,2,1,38}\right]$ $\sqrt{389}=\left[19;\stackrel{_}{1,2,1,1,1,1,2,1,38}\right]$ $\sqrt{390}=\left[19;\stackrel{_}{1,2,1,38}\right]$ $\sqrt{391}=\left[19;\stackrel{_}{1,3,2,2,1,1,2,19,2,1,1,2,2,3,1,38}\right]$ $\sqrt{392}=\left[19;\stackrel{_}{1,3,1,38}\right]$ $\sqrt{393}=\left[19;\stackrel{_}{1,4,1,2,4,1,1,1,1,12,1,1,1,1,4,2,1,4,1,38}\right]$ $\sqrt{394}=\left[19;\stackrel{_}{1,5,1,1,1,3,1,3,5,2,2,5,3,1,3,1,1,1,5,1,38}\right]$ $\sqrt{395}=\left[19;\stackrel{_}{1,6,1,38}\right]$ $\sqrt{396}=\left[19;\stackrel{_}{1,8,1,38}\right]$ $\sqrt{397}=\left[19;\stackrel{_}{1,12,3,4,9,1,2,1,2,1,1,2,1,2,1,9,4,3,12,1,38}\right]$ $\sqrt{398}=\left[19;\stackrel{_}{1,18,1,38}\right]$ $\sqrt{399}=\left[19;\stackrel{_}{1,38}\right]$ $\sqrt{401}=\left[20;\stackrel{_}{40}\right]$ $\sqrt{402}=\left[20;\stackrel{_}{20,40}\right]$ $\sqrt{403}=\left[20;\stackrel{_}{13,2,1,3,1,3,1,2,13,40}\right]$ $\sqrt{404}=\left[20;\stackrel{_}{10,40}\right]$ $\sqrt{405}=\left[20;\stackrel{_}{8,40}\right]$ $\sqrt{406}=\left[20;\stackrel{_}{6,1,2,4,7,1,4,1,7,4,2,1,6,40}\right]$ $\sqrt{407}=\left[20;\stackrel{_}{5,1,2,1,5,40}\right]$ $\sqrt{408}=\left[20;\stackrel{_}{5,40}\right]$ $\sqrt{409}=\left[20;\stackrel{_}{4,2,7,1,1,1,4,2,2,13,13,2,2,4,1,1,1,7,2,4,40}\right]$ $\sqrt{410}=\left[20;\stackrel{_}{4,40}\right]$ $\sqrt{411}=\left[20;\stackrel{_}{3,1,1,1,19,1,1,1,3,40}\right]$ $\sqrt{412}=\left[20;\stackrel{_}{3,2,1,3,1,4,3,2,13,10,13,2,3,4,1,3,1,2,3,40}\right]$ $\sqrt{413}=\left[20;\stackrel{_}{3,9,1,4,1,9,3,40}\right]$ $\sqrt{414}=\left[20;\stackrel{_}{2,1,7,2,7,1,2,40}\right]$ $\sqrt{415}=\left[20;\stackrel{_}{2,1,2,4,6,1,1,3,1,1,6,4,2,1,2,40}\right]$ $\sqrt{416}=\left[20;\stackrel{_}{2,1,1,9,1,1,2,40}\right]$ $\sqrt{417}=\left[20;\stackrel{_}{2,2,1,1,1,5,4,1,12,1,4,5,1,1,1,2,2,40}\right]$ $\sqrt{418}=\left[20;\stackrel{_}{2,4,20,4,2,40}\right]$ $\sqrt{419}=\left[20;\stackrel{_}{2,7,1,2,3,1,2,1,19,1,2,1,3,2,1,7,2,40}\right]$ $\sqrt{420}=\left[20;\stackrel{_}{2,40}\right]$ $\sqrt{421}=\left[20;\stackrel{_}{1,1,13,5,1,3,1,2,1,1,1,2,9,1,7,3,3,2,2,3,3,7,1,9,2,1,1,1,2,1,3,1,5,13,1,1,40}\right]$ $\sqrt{422}=\left[20;\stackrel{_}{1,1,5,2,1,3,20,3,1,2,5,1,1,40}\right]$ $\sqrt{423}=\left[20;\stackrel{_}{1,1,3,4,3,1,1,40}\right]$ $\sqrt{424}=\left[20;\stackrel{_}{1,1,2,4,5,1,1,1,9,1,1,1,5,4,2,1,1,40}\right]$ $\sqrt{425}=\left[20;\stackrel{_}{1,1,1,1,1,1,40}\right]$ $\sqrt{426}=\left[20;\stackrel{_}{1,1,1,3,2,6,2,3,1,1,1,40}\right]$ $\sqrt{427}=\left[20;\stackrel{_}{1,1,1,40}\right]$ $\sqrt{428}=\left[20;\stackrel{_}{1,2,4,1,5,10,5,1,4,2,1,40}\right]$ $\sqrt{429}=\left[20;\stackrel{_}{1,2,2,9,1,12,1,9,2,2,1,40}\right]$ $\sqrt{430}=\left[20;\stackrel{_}{1,2,1,3,1,6,8,6,1,3,1,2,1,40}\right]$ $\sqrt{431}=\left[20;\stackrel{_}{1,3,5,1,2,7,1,19,1,7,2,1,5,3,1,40}\right]$ $\sqrt{432}=\left[20;\stackrel{_}{1,3,1,1,1,3,1,40}\right]$ $\sqrt{433}=\left[20;\stackrel{_}{1,4,4,2,2,1,3,13,1,1,1,1,13,3,1,2,2,4,4,1,40}\right]$ $\sqrt{434}=\left[20;\stackrel{_}{1,4,1,40}\right]$ $\sqrt{435}=\left[20;\stackrel{_}{1,5,1,40}\right]$ $\sqrt{436}=\left[20;\stackrel{_}{1,7,2,1,1,1,13,3,2,2,5,1,1,4,10,4,1,1,5,2,2,3,13,1,1,1,2,7,1,40}\right]$ $\sqrt{437}=\left[20;\stackrel{_}{1,9,2,9,1,40}\right]$ $\sqrt{438}=\left[20;\stackrel{_}{1,12,1,40}\right]$ $\sqrt{439}=\left[20;\stackrel{_}{1,19,1,40}\right]$ $\sqrt{440}=\left[20;\stackrel{_}{1,40}\right]$ $\sqrt{442}=\left[21;\stackrel{_}{42}\right]$ $\sqrt{443}=\left[21;\stackrel{_}{21,42}\right]$ $\sqrt{444}=\left[21;\stackrel{_}{14,42}\right]$ $\sqrt{445}=\left[21;\stackrel{_}{10,1,1,10,42}\right]$ $\sqrt{446}=\left[21;\stackrel{_}{8,2,2,1,3,1,1,20,1,1,3,1,2,2,8,42}\right]$ $\sqrt{447}=\left[21;\stackrel{_}{7,42}\right]$ $\sqrt{448}=\left[21;\stackrel{_}{6,42}\right]$ $\sqrt{449}=\left[21;\stackrel{_}{5,3,1,1,1,7,1,5,5,1,7,1,1,1,3,5,42}\right]$ $\sqrt{450}=\left[21;\stackrel{_}{4,1,2,4,2,1,4,42}\right]$ $\sqrt{451}=\left[21;\stackrel{_}{4,4,2,8,21,8,2,4,4,42}\right]$ $\sqrt{452}=\left[21;\stackrel{_}{3,1,5,3,10,3,5,1,3,42}\right]$ $\sqrt{453}=\left[21;\stackrel{_}{3,1,1,10,14,10,1,1,3,42}\right]$ $\sqrt{454}=\left[21;\stackrel{_}{3,3,1,13,2,3,2,1,1,4,6,1,7,1,1,1,20,1,1,1,7,1,6,4,1,1,2,3,2,13,1,3,3,42}\right]$ $\sqrt{455}=\left[21;\stackrel{_}{3,42}\right]$ $\sqrt{456}=\left[21;\stackrel{_}{2,1,4,1,2,42}\right]$ $\sqrt{457}=\left[21;\stackrel{_}{2,1,1,1,5,2,13,1,3,1,4,1,1,4,1,3,1,13,2,5,1,1,1,2,42}\right]$ $\sqrt{458}=\left[21;\stackrel{_}{2,2,42}\right]$ $\sqrt{459}=\left[21;\stackrel{_}{2,2,1,4,21,4,1,2,2,42}\right]$ $\sqrt{460}=\left[21;\stackrel{_}{2,4,3,1,2,10,2,1,3,4,2,42}\right]$ $\sqrt{461}=\left[21;\stackrel{_}{2,8,10,1,1,1,1,1,1,1,1,10,8,2,42}\right]$ $\sqrt{462}=\left[21;\stackrel{_}{2,42}\right]$ $\sqrt{463}=\left[21;\stackrel{_}{1,1,13,1,5,4,1,1,1,1,2,2,6,1,3,21,3,1,6,2,2,1,1,1,1,4,5,1,13,1,1,42}\right]$ $\sqrt{464}=\left[21;\stackrel{_}{1,1,5,1,1,1,5,1,1,42}\right]$ $\sqrt{465}=\left[21;\stackrel{_}{1,1,3,2,2,2,3,1,1,42}\right]$ $\sqrt{466}=\left[21;\stackrel{_}{1,1,2,2,1,2,5,1,3,1,20,1,3,1,5,2,1,2,2,1,1,42}\right]$ $\sqrt{467}=\left[21;\stackrel{_}{1,1,1,1,3,3,21,3,3,1,1,1,1,42}\right]$ $\sqrt{468}=\left[21;\stackrel{_}{1,1,1,2,1,1,1,42}\right]$ $\sqrt{469}=\left[21;\stackrel{_}{1,1,1,10,6,10,1,1,1,42}\right]$ $\sqrt{470}=\left[21;\stackrel{_}{1,2,8,2,1,42}\right]$ $\sqrt{471}=\left[21;\stackrel{_}{1,2,2,1,3,4,14,4,3,1,2,2,1,42}\right]$ $\sqrt{472}=\left[21;\stackrel{_}{1,2,1,1,1,4,5,4,1,1,1,2,1,42}\right]$ $\sqrt{473}=\left[21;\stackrel{_}{1,2,1,42}\right]$ $\sqrt{474}=\left[21;\stackrel{_}{1,3,2,1,1,1,6,1,1,1,2,3,1,42}\right]$ $\sqrt{475}=\left[21;\stackrel{_}{1,3,1,6,2,6,1,3,1,42}\right]$ $\sqrt{476}=\left[21;\stackrel{_}{1,4,2,10,2,4,1,42}\right]$ $\sqrt{477}=\left[21;\stackrel{_}{1,5,3,1,4,10,1,2,2,4,2,2,1,10,4,1,3,5,1,42}\right]$ $\sqrt{478}=\left[21;\stackrel{_}{1,6,3,4,1,1,5,1,2,3,1,1,1,1,1,13,1,20,1,13,1,1,1,1,1,3,2,1,5,1,1,4,3,6,1,42}\right]$ $\sqrt{479}=\left[21;\stackrel{_}{1,7,1,3,2,21,2,3,1,7,1,42}\right]$ $\sqrt{480}=\left[21;\stackrel{_}{1,9,1,42}\right]$ $\sqrt{481}=\left[21;\stackrel{_}{1,13,1,1,1,4,4,1,1,1,13,1,42}\right]$ $\sqrt{482}=\left[21;\stackrel{_}{1,20,1,42}\right]$ $\sqrt{483}=\left[21;\stackrel{_}{1,42}\right]$ $\sqrt{485}=\left[22;\stackrel{_}{44}\right]$ $\sqrt{486}=\left[22;\stackrel{_}{22,44}\right]$ $\sqrt{487}=\left[22;\stackrel{_}{14,1,2,4,1,1,3,2,5,1,6,1,1,21,1,1,6,1,5,2,3,1,1,4,2,1,14,44}\right]$ $\sqrt{488}=\left[22;\stackrel{_}{11,44}\right]$ $\sqrt{489}=\left[22;\stackrel{_}{8,1,4,1,1,1,3,2,1,2,14,2,1,2,3,1,1,1,4,1,8,44}\right]$ $\sqrt{490}=\left[22;\stackrel{_}{7,2,1,4,4,4,1,2,7,44}\right]$ $\sqrt{491}=\left[22;\stackrel{_}{6,3,4,8,1,1,1,2,1,1,21,1,1,2,1,1,1,8,4,3,6,44}\right]$ $\sqrt{492}=\left[22;\stackrel{_}{5,1,1,10,1,1,5,44}\right]$ $\sqrt{493}=\left[22;\stackrel{_}{4,1,10,3,3,10,1,4,44}\right]$ $\sqrt{494}=\left[22;\stackrel{_}{4,2,2,1,2,1,2,2,4,44}\right]$ $\sqrt{495}=\left[22;\stackrel{_}{4,44}\right]$ $\sqrt{496}=\left[22;\stackrel{_}{3,1,2,4,1,1,2,2,2,1,1,4,2,1,3,44}\right]$ $\sqrt{497}=\left[22;\stackrel{_}{3,2,2,5,6,5,2,2,3,44}\right]$ $\sqrt{498}=\left[22;\stackrel{_}{3,6,22,6,3,44}\right]$ $\sqrt{499}=\left[22;\stackrel{_}{2,1,21,1,2,44}\right]$ $\sqrt{500}=\left[22;\stackrel{_}{2,1,3,2,1,1,10,1,1,2,3,1,2,44}\right]$ $\sqrt{501}=\left[22;\stackrel{_}{2,1,1,1,1,3,8,1,2,10,1,5,2,14,2,5,1,10,2,1,8,3,1,1,1,1,2,44}\right]$ $\sqrt{502}=\left[22;\stackrel{_}{2,2,7,14,1,4,22,4,1,14,7,2,2,44}\right]$ $\sqrt{503}=\left[22;\stackrel{_}{2,2,1,21,1,2,2,44}\right]$ $\sqrt{504}=\left[22;\stackrel{_}{2,4,2,44}\right]$ $\sqrt{505}=\left[22;\stackrel{_}{2,8,2,44}\right]$ $\sqrt{506}=\left[22;\stackrel{_}{2,44}\right]$ $\sqrt{507}=\left[22;\stackrel{_}{1,1,14,1,1,44}\right]$ $\sqrt{508}=\left[22;\stackrel{_}{1,1,5,1,14,5,1,1,3,4,1,2,1,1,1,10,1,1,1,2,1,4,3,1,1,5,14,1,5,1,1,44}\right]$ $\sqrt{509}=\left[22;\stackrel{_}{1,1,3,1,1,2,10,1,8,8,1,10,2,1,1,3,1,1,44}\right]$ $\sqrt{510}=\left[22;\stackrel{_}{1,1,2,1,1,44}\right]$ $\sqrt{511}=\left[22;\stackrel{_}{1,1,1,1,6,1,14,4,1,21,1,4,14,1,6,1,1,1,1,44}\right]$ $\sqrt{512}=\left[22;\stackrel{_}{1,1,1,2,6,11,6,2,1,1,1,44}\right]$ $\sqrt{513}=\left[22;\stackrel{_}{1,1,1,5,1,4,5,2,5,4,1,5,1,1,1,44}\right]$ $\sqrt{514}=\left[22;\stackrel{_}{1,2,22,2,1,44}\right]$ $\sqrt{515}=\left[22;\stackrel{_}{1,2,3,1,3,1,3,2,1,44}\right]$ $\sqrt{516}=\left[22;\stackrel{_}{1,2,1,1,14,1,1,2,1,44}\right]$ $\sqrt{517}=\left[22;\stackrel{_}{1,2,1,4,3,3,2,10,1,14,4,14,1,10,2,3,3,4,1,2,1,44}\right]$ $\sqrt{518}=\left[22;\stackrel{_}{1,3,6,3,1,44}\right]$ $\sqrt{519}=\left[22;\stackrel{_}{1,3,1,1,2,1,2,3,7,3,2,1,2,1,1,3,1,44}\right]$ $\sqrt{520}=\left[22;\stackrel{_}{1,4,11,4,1,44}\right]$ $\sqrt{521}=\left[22;\stackrel{_}{1,4,1,2,1,2,8,1,3,3,1,8,2,1,2,1,4,1,44}\right]$ $\sqrt{522}=\left[22;\stackrel{_}{1,5,1,1,4,1,1,5,1,44}\right]$ $\sqrt{523}=\left[22;\stackrel{_}{1,6,1,1,1,4,2,3,14,1,21,1,14,3,2,4,1,1,1,6,1,44}\right]$ $\sqrt{524}=\left[22;\stackrel{_}{1,8,5,1,1,1,1,2,1,10,1,2,1,1,1,1,5,8,1,44}\right]$ $\sqrt{525}=\left[22;\stackrel{_}{1,10,2,10,1,44}\right]$ $\sqrt{526}=\left[22;\stackrel{_}{1,14,3,4,1,3,2,1,3,1,8,2,1,1,2,2,6,7,2,22,2,7,6,2,2,1,1,2,8,1,3,1,2,3,1,4,3,14,1,44}\right]$ $\sqrt{527}=\left[22;\stackrel{_}{1,21,1,44}\right]$ $\sqrt{528}=\left[22;\stackrel{_}{1,44}\right]$ $\sqrt{530}=\left[23;\stackrel{_}{46}\right]$ $\sqrt{531}=\left[23;\stackrel{_}{23,46}\right]$ $\sqrt{532}=\left[23;\stackrel{_}{15,2,1,4,2,4,1,2,15,46}\right]$ $\sqrt{533}=\left[23;\stackrel{_}{11,1,1,11,46}\right]$ $\sqrt{534}=\left[23;\stackrel{_}{9,4,1,1,22,1,1,4,9,46}\right]$ $\sqrt{535}=\left[23;\stackrel{_}{7,1,2,4,1,3,1,4,2,1,7,46}\right]$ $\sqrt{536}=\left[23;\stackrel{_}{6,1,1,2,5,2,1,1,6,46}\right]$ $\sqrt{537}=\left[23;\stackrel{_}{5,1,3,2,1,1,1,2,1,14,1,2,1,1,1,2,3,1,5,46}\right]$ $\sqrt{538}=\left[23;\stackrel{_}{5,7,1,1,7,5,46}\right]$ $\sqrt{539}=\left[23;\stackrel{_}{4,1,1,1,1,1,4,46}\right]$ $\sqrt{540}=\left[23;\stackrel{_}{4,4,1,10,1,4,4,46}\right]$ $\sqrt{541}=\left[23;\stackrel{_}{3,1,5,1,8,2,4,1,2,3,1,1,11,15,2,2,1,1,1,1,1,1,2,2,15,11,1,1,3,2,1,4,2,8,1,5,1,3,46}\right]$ $\sqrt{542}=\left[23;\stackrel{_}{3,1,1,3,1,1,1,22,1,1,1,3,1,1,3,46}\right]$ $\sqrt{543}=\left[23;\stackrel{_}{3,3,3,1,14,1,3,3,3,46}\right]$ $\sqrt{544}=\left[23;\stackrel{_}{3,11,3,46}\right]$ $\sqrt{545}=\left[23;\stackrel{_}{2,1,8,1,2,46}\right]$ $\sqrt{546}=\left[23;\stackrel{_}{2,1,2,1,2,46}\right]$ $\sqrt{547}=\left[23;\stackrel{_}{2,1,1,2,1,2,1,7,15,2,6,5,23,5,6,2,15,7,1,2,1,2,1,1,2,46}\right]$ $\sqrt{548}=\left[23;\stackrel{_}{2,2,3,1,5,1,10,1,5,1,3,2,2,46}\right]$ $\sqrt{549}=\left[23;\stackrel{_}{2,3,9,11,1,1,1,1,4,1,1,1,1,11,9,3,2,46}\right]$ $\sqrt{550}=\left[23;\stackrel{_}{2,4,1,2,1,1,7,4,7,1,1,2,1,4,2,46}\right]$ $\sqrt{551}=\left[23;\stackrel{_}{2,8,1,8,2,46}\right]$ $\sqrt{552}=\left[23;\stackrel{_}{2,46}\right]$ $\sqrt{553}=\left[23;\stackrel{_}{1,1,15,5,1,4,2,1,1,3,1,2,6,2,1,3,1,1,2,4,1,5,15,1,1,46}\right]$ $\sqrt{554}=\left[23;\stackrel{_}{1,1,6,4,1,1,4,6,1,1,46}\right]$ $\sqrt{555}=\left[23;\stackrel{_}{1,1,3,1,3,1,1,46}\right]$ $\sqrt{556}=\left[23;\stackrel{_}{1,1,2,1,1,1,3,3,2,1,5,5,15,1,1,8,1,10,1,8,1,1,15,5,5,1,2,3,3,1,1,1,2,1,1,46}\right]$ $\sqrt{557}=\left[23;\stackrel{_}{1,1,1,1,46}\right]$ $\sqrt{558}=\left[23;\stackrel{_}{1,1,1,1,1,4,1,1,1,1,1,46}\right]$ $\sqrt{559}=\left[23;\stackrel{_}{1,1,1,4,15,1,1,4,1,2,1,4,1,1,15,4,1,1,1,46}\right]$ $\sqrt{560}=\left[23;\stackrel{_}{1,1,1,46}\right]$ $\sqrt{561}=\left[23;\stackrel{_}{1,2,5,1,1,2,2,2,1,1,5,2,1,46}\right]$ $\sqrt{562}=\left[23;\stackrel{_}{1,2,2,2,4,1,5,1,22,1,5,1,4,2,2,2,1,46}\right]$ $\sqrt{563}=\left[23;\stackrel{_}{1,2,1,2,23,2,1,2,1,46}\right]$ $\sqrt{564}=\left[23;\stackrel{_}{1,2,1,46}\right]$ $\sqrt{565}=\left[23;\stackrel{_}{1,3,2,1,11,5,5,11,1,2,3,1,46}\right]$ $\sqrt{566}=\left[23;\stackrel{_}{1,3,1,3,1,1,8,1,22,1,8,1,1,3,1,3,1,46}\right]$ $\sqrt{567}=\left[23;\stackrel{_}{1,4,3,4,1,46}\right]$ $\sqrt{568}=\left[23;\stackrel{_}{1,4,1,46}\right]$ $\sqrt{569}=\left[23;\stackrel{_}{1,5,1,5,9,2,1,2,3,3,2,1,2,9,5,1,5,1,46}\right]$ $\sqrt{570}=\left[23;\stackrel{_}{1,6,1,46}\right]$ $\sqrt{571}=\left[23;\stackrel{_}{1,8,1,1,2,1,1,1,15,3,2,1,6,7,1,4,2,3,4,2,23,2,4,3,2,4,1,7,6,1,2,3,15,1,1,1,2,1,1,8,1,46}\right]$ $\sqrt{572}=\left[23;\stackrel{_}{1,10,1,46}\right]$ $\sqrt{573}=\left[23;\stackrel{_}{1,14,1,46}\right]$ $\sqrt{574}=\left[23;\stackrel{_}{1,22,1,46}\right]$ $\sqrt{575}=\left[23;\stackrel{_}{1,46}\right]$ $\sqrt{577}=\left[24;\stackrel{_}{48}\right]$ $\sqrt{578}=\left[24;\stackrel{_}{24,48}\right]$ $\sqrt{579}=\left[24;\stackrel{_}{16,48}\right]$ $\sqrt{580}=\left[24;\stackrel{_}{12,48}\right]$ $\sqrt{581}=\left[24;\stackrel{_}{9,1,1,1,1,1,3,11,1,3,2,6,2,3,1,11,3,1,1,1,1,1,9,48}\right]$ $\sqrt{582}=\left[24;\stackrel{_}{8,48}\right]$ $\sqrt{583}=\left[24;\stackrel{_}{6,1,7,5,4,5,7,1,6,48}\right]$ $\sqrt{584}=\left[24;\stackrel{_}{6,48}\right]$ $\sqrt{585}=\left[24;\stackrel{_}{5,2,1,4,1,2,5,48}\right]$ $\sqrt{586}=\left[24;\stackrel{_}{4,1,4,1,1,2,1,2,7,1,2,2,1,7,2,1,2,1,1,4,1,4,48}\right]$ $\sqrt{587}=\left[24;\stackrel{_}{4,2,1,1,1,1,23,1,1,1,1,2,4,48}\right]$ $\sqrt{588}=\left[24;\stackrel{_}{4,48}\right]$ $\sqrt{589}=\left[24;\stackrel{_}{3,1,2,2,15,1,3,9,2,4,1,11,3,6,1,1,1,1,3,2,3,1,1,1,1,6,3,11,1,4,2,9,3,1,15,2,2,1,3,48}\right]$ $\sqrt{590}=\left[24;\stackrel{_}{3,2,4,2,3,48}\right]$ $\sqrt{591}=\left[24;\stackrel{_}{3,4,1,1,7,1,1,4,3,48}\right]$ $\sqrt{592}=\left[24;\stackrel{_}{3,48}\right]$ $\sqrt{593}=\left[24;\stackrel{_}{2,1,5,2,2,1,1,2,2,5,1,2,48}\right]$ $\sqrt{594}=\left[24;\stackrel{_}{2,1,2,5,24,5,2,1,2,48}\right]$ $\sqrt{595}=\left[24;\stackrel{_}{2,1,1,4,1,4,1,1,2,48}\right]$ $\sqrt{596}=\left[24;\stackrel{_}{2,2,2,1,1,1,6,2,1,9,12,9,1,2,6,1,1,1,2,2,2,48}\right]$ $\sqrt{597}=\left[24;\stackrel{_}{2,3,3,1,3,1,2,11,1,6,16,6,1,11,2,1,3,1,3,3,2,48}\right]$ $\sqrt{598}=\left[24;\stackrel{_}{2,4,1,15,2,15,1,4,2,48}\right]$ $\sqrt{599}=\left[24;\stackrel{_}{2,9,3,2,1,1,3,1,6,4,1,2,1,23,1,2,1,4,6,1,3,1,1,2,3,9,2,48}\right]$ $\sqrt{600}=\left[24;\stackrel{_}{2,48}\right]$ $\sqrt{601}=\left[24;\stackrel{_}{1,1,15,1,5,5,3,1,1,2,1,2,2,1,9,9,1,2,2,1,2,1,1,3,5,5,1,15,1,1,48}\right]$ $\sqrt{602}=\left[24;\stackrel{_}{1,1,6,1,1,48}\right]$ $\sqrt{603}=\left[24;\stackrel{_}{1,1,3,1,23,1,3,1,1,48}\right]$ $\sqrt{604}=\left[24;\stackrel{_}{1,1,2,1,3,2,1,1,1,1,1,4,1,5,3,9,1,1,15,1,6,12,6,1,15,1,1,9,3,5,1,4,1,1,1,1,1,2,3,1,2,1,1,48}\right]$ $\sqrt{605}=\left[24;\stackrel{_}{1,1,2,11,1,8,1,11,2,1,1,48}\right]$ $\sqrt{606}=\left[24;\stackrel{_}{1,1,1,1,1,1,2,1,9,8,9,1,2,1,1,1,1,1,1,48}\right]$ $\sqrt{607}=\left[24;\stackrel{_}{1,1,1,3,7,1,15,1,1,4,1,23,1,4,1,1,15,1,7,3,1,1,1,48}\right]$ $\sqrt{608}=\left[24;\stackrel{_}{1,1,1,11,1,1,1,48}\right]$ $\sqrt{609}=\left[24;\stackrel{_}{1,2,9,1,1,6,1,1,9,2,1,48}\right]$ $\sqrt{610}=\left[24;\stackrel{_}{1,2,3,5,5,3,2,1,48}\right]$ $\sqrt{611}=\left[24;\stackrel{_}{1,2,1,1,4,2,1,2,4,1,1,2,1,48}\right]$ $\sqrt{612}=\left[24;\stackrel{_}{1,2,1,4,1,2,1,48}\right]$ $\sqrt{613}=\left[24;\stackrel{_}{1,3,6,1,4,1,1,1,3,2,11,1,15,1,1,2,2,1,1,15,1,11,2,3,1,1,1,4,1,6,3,1,48}\right]$ $\sqrt{614}=\left[24;\stackrel{_}{1,3,1,1,9,2,1,4,3,1,1,2,24,2,1,1,3,4,1,2,9,1,1,3,1,48}\right]$ $\sqrt{615}=\left[24;\stackrel{_}{1,3,1,48}\right]$ $\sqrt{616}=\left[24;\stackrel{_}{1,4,1,1,6,1,1,4,1,48}\right]$ $\sqrt{617}=\left[24;\stackrel{_}{1,5,4,2,1,6,2,2,6,1,2,4,5,1,48}\right]$ $\sqrt{618}=\left[24;\stackrel{_}{1,6,8,6,1,48}\right]$ $\sqrt{619}=\left[24;\stackrel{_}{1,7,3,5,4,1,3,1,2,1,1,9,2,1,1,1,15,1,23,1,15,1,1,1,2,9,1,1,2,1,3,1,4,5,3,7,1,48}\right]$ $\sqrt{620}=\left[24;\stackrel{_}{1,8,1,48}\right]$ $\sqrt{621}=\left[24;\stackrel{_}{1,11,2,11,1,48}\right]$ $\sqrt{622}=\left[24;\stackrel{_}{1,15,1,1,1,4,1,7,2,24,2,7,1,4,1,1,1,15,1,48}\right]$ $\sqrt{623}=\left[24;\stackrel{_}{1,23,1,48}\right]$ $\sqrt{624}=\left[24;\stackrel{_}{1,48}\right]$ $\sqrt{626}=\left[25;\stackrel{_}{50}\right]$ $\sqrt{627}=\left[25;\stackrel{_}{25,50}\right]$ $\sqrt{628}=\left[25;\stackrel{_}{16,1,2,5,4,2,1,2,2,3,1,3,12,3,1,3,2,2,1,2,4,5,2,1,16,50}\right]$ $\sqrt{629}=\left[25;\stackrel{_}{12,1,1,12,50}\right]$ $\sqrt{630}=\left[25;\stackrel{_}{10,50}\right]$ $\sqrt{631}=\left[25;\stackrel{_}{8,2,1,4,1,9,4,2,6,1,2,1,2,1,1,1,1,4,2,2,2,1,16,25,16,1,2,2,2,4,1,1,1,1,2,1,2,1,6,2,4,9,1,4,1,2,8,50}\right]$ $\sqrt{632}=\left[25;\stackrel{_}{7,6,7,50}\right]$ $\sqrt{633}=\left[25;\stackrel{_}{6,3,1,2,2,1,1,2,16,2,1,1,2,2,1,3,6,50}\right]$ $\sqrt{634}=\left[25;\stackrel{_}{5,1,1,2,1,4,3,6,1,7,1,1,7,1,6,3,4,1,2,1,1,5,50}\right]$ $\sqrt{635}=\left[25;\stackrel{_}{5,50}\right]$ $\sqrt{636}=\left[25;\stackrel{_}{4,1,1,3,3,12,3,3,1,1,4,50}\right]$ $\sqrt{637}=\left[25;\stackrel{_}{4,5,2,1,3,1,1,12,16,1,2,1,16,12,1,1,3,1,2,5,4,50}\right]$ $\sqrt{638}=\left[25;\stackrel{_}{3,1,6,2,6,1,3,50}\right]$ $\sqrt{639}=\left[25;\stackrel{_}{3,1,1,2,4,4,1,4,1,4,4,2,1,1,3,50}\right]$ $\sqrt{640}=\left[25;\stackrel{_}{3,2,1,4,1,11,1,4,1,2,3,50}\right]$ $\sqrt{641}=\left[25;\stackrel{_}{3,6,1,9,3,1,3,1,5,1,1,5,1,3,1,3,9,1,6,3,50}\right]$ $\sqrt{642}=\left[25;\stackrel{_}{2,1,24,1,2,50}\right]$ $\sqrt{643}=\left[25;\stackrel{_}{2,1,3,1,16,8,2,1,1,5,25,5,1,1,2,8,16,1,3,1,2,50}\right]$ $\sqrt{644}=\left[25;\stackrel{_}{2,1,1,1,6,1,1,1,2,50}\right]$ $\sqrt{645}=\left[25;\stackrel{_}{2,1,1,12,10,12,1,1,2,50}\right]$ $\sqrt{646}=\left[25;\stackrel{_}{2,2,2,50}\right]$ $\sqrt{647}=\left[25;\stackrel{_}{2,3,2,2,1,1,4,25,4,1,1,2,2,3,2,50}\right]$ $\sqrt{648}=\left[25;\stackrel{_}{2,5,6,5,2,50}\right]$ $\sqrt{649}=\left[25;\stackrel{_}{2,9,1,2,3,1,1,2,1,4,1,16,6,3,4,3,6,16,1,4,1,2,1,1,3,2,1,9,2,50}\right]$ $\sqrt{650}=\left[25;\stackrel{_}{2,50}\right]$ $\sqrt{651}=\left[25;\stackrel{_}{1,1,16,1,1,50}\right]$ $\sqrt{652}=\left[25;\stackrel{_}{1,1,6,1,3,1,3,2,5,1,16,5,1,1,1,1,2,12,2,1,1,1,1,5,16,1,5,2,3,1,3,1,6,1,1,50}\right]$ $\sqrt{653}=\left[25;\stackrel{_}{1,1,4,7,12,1,1,1,3,3,1,1,1,12,7,4,1,1,50}\right]$ $\sqrt{654}=\left[25;\stackrel{_}{1,1,2,1,9,1,1,16,1,1,9,1,2,1,1,50}\right]$ $\sqrt{655}=\left[25;\stackrel{_}{1,1,2,5,3,2,8,10,8,2,3,5,2,1,1,50}\right]$ $\sqrt{656}=\left[25;\stackrel{_}{1,1,1,1,2,1,1,1,1,50}\right]$ $\sqrt{657}=\left[25;\stackrel{_}{1,1,1,2,1,1,5,1,4,1,5,1,1,2,1,1,1,50}\right]$ $\sqrt{658}=\left[25;\stackrel{_}{1,1,1,6,1,1,1,50}\right]$ $\sqrt{659}=\left[25;\stackrel{_}{1,2,25,2,1,50}\right]$ $\sqrt{660}=\left[25;\stackrel{_}{1,2,4,2,1,50}\right]$ $\sqrt{661}=\left[25;\stackrel{_}{1,2,2,4,4,16,1,9,2,1,12,5,1,1,1,2,1,3,1,1,3,1,2,1,1,1,5,12,1,2,9,1,16,4,4,2,2,1,50}\right]$ $\sqrt{662}=\left[25;\stackrel{_}{1,2,1,2,3,1,1,2,6,1,24,1,6,2,1,1,3,2,1,2,1,50}\right]$ $\sqrt{663}=\left[25;\stackrel{_}{1,2,1,50}\right]$ $\sqrt{664}=\left[25;\stackrel{_}{1,3,3,5,2,2,1,1,2,1,5,1,2,1,1,2,2,5,3,3,1,50}\right]$ $\sqrt{665}=\left[25;\stackrel{_}{1,3,1,2,2,2,1,3,1,50}\right]$ $\sqrt{666}=\left[25;\stackrel{_}{1,4,5,1,1,6,1,4,1,6,1,1,5,4,1,50}\right]$ $\sqrt{667}=\left[25;\stackrel{_}{1,4,1,3,7,8,2,8,7,3,1,4,1,50}\right]$ $\sqrt{668}=\left[25;\stackrel{_}{1,5,2,12,2,5,1,50}\right]$ $\sqrt{669}=\left[25;\stackrel{_}{1,6,2,2,3,1,9,1,1,2,1,12,4,1,1,1,1,1,16,1,1,1,1,1,4,12,1,2,1,1,9,1,3,2,2,6,1,50}\right]$ $\sqrt{670}=\left[25;\stackrel{_}{1,7,1,1,1,5,10,5,1,1,1,7,1,50}\right]$ $\sqrt{671}=\left[25;\stackrel{_}{1,9,2,1,1,1,2,9,1,50}\right]$ $\sqrt{672}=\left[25;\stackrel{_}{1,11,1,50}\right]$ $\sqrt{673}=\left[25;\stackrel{_}{1,16,3,5,2,3,1,1,6,1,5,1,1,1,1,1,1,1,1,5,1,6,1,1,3,2,5,3,16,1,50}\right]$ $\sqrt{674}=\left[25;\stackrel{_}{1,24,1,50}\right]$ $\sqrt{675}=\left[25;\stackrel{_}{1,50}\right]$ $\sqrt{677}=\left[26;\stackrel{_}{52}\right]$ $\sqrt{678}=\left[26;\stackrel{_}{26,52}\right]$ $\sqrt{679}=\left[26;\stackrel{_}{17,2,1,5,8,1,1,25,1,1,8,5,1,2,17,52}\right]$ $\sqrt{680}=\left[26;\stackrel{_}{13,52}\right]$ $\sqrt{681}=\left[26;\stackrel{_}{10,2,2,1,1,2,6,7,3,2,1,16,1,2,3,7,6,2,1,1,2,2,10,52}\right]$ $\sqrt{682}=\left[26;\stackrel{_}{8,1,2,5,2,5,2,1,8,52}\right]$ $\sqrt{683}=\left[26;\stackrel{_}{7,2,4,3,1,1,25,1,1,3,4,2,7,52}\right]$ $\sqrt{684}=\left[26;\stackrel{_}{6,1,1,12,1,1,6,52}\right]$ $\sqrt{685}=\left[26;\stackrel{_}{5,1,3,1,12,3,2,2,3,12,1,3,1,5,52}\right]$ $\sqrt{686}=\left[26;\stackrel{_}{5,4,1,1,3,2,10,26,10,2,3,1,1,4,5,52}\right]$ $\sqrt{687}=\left[26;\stackrel{_}{4,1,2,1,16,1,2,1,4,52}\right]$ $\sqrt{688}=\left[26;\stackrel{_}{4,2,1,5,7,3,7,5,1,2,4,52}\right]$ $\sqrt{689}=\left[26;\stackrel{_}{4,52}\right]$ $\sqrt{690}=\left[26;\stackrel{_}{3,1,2,1,3,52}\right]$ $\sqrt{691}=\left[26;\stackrel{_}{3,2,17,10,2,5,2,1,2,1,4,1,1,8,4,1,1,1,25,1,1,1,4,8,1,1,4,1,2,1,2,5,2,10,17,2,3,52}\right]$ $\sqrt{692}=\left[26;\stackrel{_}{3,3,1,2,1,1,12,1,1,2,1,3,3,52}\right]$ $\sqrt{693}=\left[26;\stackrel{_}{3,12,1,4,1,12,3,52}\right]$ $\sqrt{694}=\left[26;\stackrel{_}{2,1,9,1,6,1,1,1,1,1,2,1,8,17,2,4,3,3,2,4,1,5,26,5,1,4,2,3,3,4,2,17,8,1,2,1,1,1,1,1,6,1,9,1,2,52}\right]$ $\sqrt{695}=\left[26;\stackrel{_}{2,1,3,10,3,1,2,52}\right]$ $\sqrt{696}=\left[26;\stackrel{_}{2,1,1,1,1,1,2,52}\right]$ $\sqrt{697}=\left[26;\stackrel{_}{2,2,52}\right]$ $\sqrt{698}=\left[26;\stackrel{_}{2,2,1,1,1,1,2,2,52}\right]$ $\sqrt{699}=\left[26;\stackrel{_}{2,3,1,1,2,1,25,1,2,1,1,3,2,52}\right]$ $\sqrt{700}=\left[26;\stackrel{_}{2,5,2,1,1,1,1,12,1,1,1,1,2,5,2,52}\right]$ $\sqrt{701}=\left[26;\stackrel{_}{2,10,10,2,52}\right]$ $\sqrt{702}=\left[26;\stackrel{_}{2,52}\right]$ $\sqrt{703}=\left[26;\stackrel{_}{1,1,17,5,1,5,17,1,1,52}\right]$ $\sqrt{704}=\left[26;\stackrel{_}{1,1,7,13,7,1,1,52}\right]$ $\sqrt{705}=\left[26;\stackrel{_}{1,1,4,3,10,3,4,1,1,52}\right]$ $\sqrt{706}=\left[26;\stackrel{_}{1,1,3,26,3,1,1,52}\right]$ $\sqrt{707}=\left[26;\stackrel{_}{1,1,2,3,2,1,1,52}\right]$ $\sqrt{708}=\left[26;\stackrel{_}{1,1,1,1,4,4,4,1,1,1,1,52}\right]$ $\sqrt{709}=\left[26;\stackrel{_}{1,1,1,2,7,4,3,3,4,7,2,1,1,1,52}\right]$ $\sqrt{710}=\left[26;\stackrel{_}{1,1,1,4,1,1,1,52}\right]$ $\sqrt{711}=\left[26;\stackrel{_}{1,1,1,52}\right]$ $\sqrt{712}=\left[26;\stackrel{_}{1,2,6,2,1,52}\right]$ $\sqrt{713}=\left[26;\stackrel{_}{1,2,2,1,4,6,2,6,4,1,2,2,1,52}\right]$ $\sqrt{714}=\left[26;\stackrel{_}{1,2,1,1,2,1,1,2,1,52}\right]$ $\sqrt{715}=\left[26;\stackrel{_}{1,2,1,5,5,5,1,2,1,52}\right]$ $\sqrt{716}=\left[26;\stackrel{}{1,3,7,2,1,1,6,10,1,1,4,2}$