The square root of any natural number $n$ can be expressed in the form of a continued fraction. When $n$ is a perfect square, its continued fraction expansion is trivial. But when it is not a perfect square, its continued fraction expansion is both infinite and periodic. We are interested in the latter here.
For more information, see:
The values presented below were computed using a Python program that I wrote in 2015.
| $\sqrt{2} = \left[1; \overline{2}\right]$ |
| $\sqrt{3} = \left[1; \overline{1, 2}\right]$ |
| $\sqrt{5} = \left[2; \overline{4}\right]$ |
| $\sqrt{6} = \left[2; \overline{2, 4}\right]$ |
| $\sqrt{7} = \left[2; \overline{1, 1, 1, 4}\right]$ |
| $\sqrt{8} = \left[2; \overline{1, 4}\right]$ |
| $\sqrt{10} = \left[3; \overline{6}\right]$ |
| $\sqrt{11} = \left[3; \overline{3, 6}\right]$ |
| $\sqrt{12} = \left[3; \overline{2, 6}\right]$ |
| $\sqrt{13} = \left[3; \overline{1, 1, 1, 1, 6}\right]$ |
| $\sqrt{14} = \left[3; \overline{1, 2, 1, 6}\right]$ |
| $\sqrt{15} = \left[3; \overline{1, 6}\right]$ |
| $\sqrt{17} = \left[4; \overline{8}\right]$ |
| $\sqrt{18} = \left[4; \overline{4, 8}\right]$ |
| $\sqrt{19} = \left[4; \overline{2, 1, 3, 1, 2, 8}\right]$ |
| $\sqrt{20} = \left[4; \overline{2, 8}\right]$ |
| $\sqrt{21} = \left[4; \overline{1, 1, 2, 1, 1, 8}\right]$ |
| $\sqrt{22} = \left[4; \overline{1, 2, 4, 2, 1, 8}\right]$ |
| $\sqrt{23} = \left[4; \overline{1, 3, 1, 8}\right]$ |
| $\sqrt{24} = \left[4; \overline{1, 8}\right]$ |
| $\sqrt{26} = \left[5; \overline{10}\right]$ |
| $\sqrt{27} = \left[5; \overline{5, 10}\right]$ |
| $\sqrt{28} = \left[5; \overline{3, 2, 3, 10}\right]$ |
| $\sqrt{29} = \left[5; \overline{2, 1, 1, 2, 10}\right]$ |
| $\sqrt{30} = \left[5; \overline{2, 10}\right]$ |
| $\sqrt{31} = \left[5; \overline{1, 1, 3, 5, 3, 1, 1, 10}\right]$ |
| $\sqrt{32} = \left[5; \overline{1, 1, 1, 10}\right]$ |
| $\sqrt{33} = \left[5; \overline{1, 2, 1, 10}\right]$ |
| $\sqrt{34} = \left[5; \overline{1, 4, 1, 10}\right]$ |
| $\sqrt{35} = \left[5; \overline{1, 10}\right]$ |
| $\sqrt{37} = \left[6; \overline{12}\right]$ |
| $\sqrt{38} = \left[6; \overline{6, 12}\right]$ |
| $\sqrt{39} = \left[6; \overline{4, 12}\right]$ |
| $\sqrt{40} = \left[6; \overline{3, 12}\right]$ |
| $\sqrt{41} = \left[6; \overline{2, 2, 12}\right]$ |
| $\sqrt{42} = \left[6; \overline{2, 12}\right]$ |
| $\sqrt{43} = \left[6; \overline{1, 1, 3, 1, 5, 1, 3, 1, 1, 12}\right]$ |
| $\sqrt{44} = \left[6; \overline{1, 1, 1, 2, 1, 1, 1, 12}\right]$ |
| $\sqrt{45} = \left[6; \overline{1, 2, 2, 2, 1, 12}\right]$ |
| $\sqrt{46} = \left[6; \overline{1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12}\right]$ |
| $\sqrt{47} = \left[6; \overline{1, 5, 1, 12}\right]$ |
| $\sqrt{48} = \left[6; \overline{1, 12}\right]$ |
| $\sqrt{50} = \left[7; \overline{14}\right]$ |
| $\sqrt{51} = \left[7; \overline{7, 14}\right]$ |
| $\sqrt{52} = \left[7; \overline{4, 1, 2, 1, 4, 14}\right]$ |
| $\sqrt{53} = \left[7; \overline{3, 1, 1, 3, 14}\right]$ |
| $\sqrt{54} = \left[7; \overline{2, 1, 6, 1, 2, 14}\right]$ |
| $\sqrt{55} = \left[7; \overline{2, 2, 2, 14}\right]$ |
| $\sqrt{56} = \left[7; \overline{2, 14}\right]$ |
| $\sqrt{57} = \left[7; \overline{1, 1, 4, 1, 1, 14}\right]$ |
| $\sqrt{58} = \left[7; \overline{1, 1, 1, 1, 1, 1, 14}\right]$ |
| $\sqrt{59} = \left[7; \overline{1, 2, 7, 2, 1, 14}\right]$ |
| $\sqrt{60} = \left[7; \overline{1, 2, 1, 14}\right]$ |
| $\sqrt{61} = \left[7; \overline{1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14}\right]$ |
| $\sqrt{62} = \left[7; \overline{1, 6, 1, 14}\right]$ |
| $\sqrt{63} = \left[7; \overline{1, 14}\right]$ |
| $\sqrt{65} = \left[8; \overline{16}\right]$ |
| $\sqrt{66} = \left[8; \overline{8, 16}\right]$ |
| $\sqrt{67} = \left[8; \overline{5, 2, 1, 1, 7, 1, 1, 2, 5, 16}\right]$ |
| $\sqrt{68} = \left[8; \overline{4, 16}\right]$ |
| $\sqrt{69} = \left[8; \overline{3, 3, 1, 4, 1, 3, 3, 16}\right]$ |
| $\sqrt{70} = \left[8; \overline{2, 1, 2, 1, 2, 16}\right]$ |
| $\sqrt{71} = \left[8; \overline{2, 2, 1, 7, 1, 2, 2, 16}\right]$ |
| $\sqrt{72} = \left[8; \overline{2, 16}\right]$ |
| $\sqrt{73} = \left[8; \overline{1, 1, 5, 5, 1, 1, 16}\right]$ |
| $\sqrt{74} = \left[8; \overline{1, 1, 1, 1, 16}\right]$ |
| $\sqrt{75} = \left[8; \overline{1, 1, 1, 16}\right]$ |
| $\sqrt{76} = \left[8; \overline{1, 2, 1, 1, 5, 4, 5, 1, 1, 2, 1, 16}\right]$ |
| $\sqrt{77} = \left[8; \overline{1, 3, 2, 3, 1, 16}\right]$ |
| $\sqrt{78} = \left[8; \overline{1, 4, 1, 16}\right]$ |
| $\sqrt{79} = \left[8; \overline{1, 7, 1, 16}\right]$ |
| $\sqrt{80} = \left[8; \overline{1, 16}\right]$ |
| $\sqrt{82} = \left[9; \overline{18}\right]$ |
| $\sqrt{83} = \left[9; \overline{9, 18}\right]$ |
| $\sqrt{84} = \left[9; \overline{6, 18}\right]$ |
| $\sqrt{85} = \left[9; \overline{4, 1, 1, 4, 18}\right]$ |
| $\sqrt{86} = \left[9; \overline{3, 1, 1, 1, 8, 1, 1, 1, 3, 18}\right]$ |
| $\sqrt{87} = \left[9; \overline{3, 18}\right]$ |
| $\sqrt{88} = \left[9; \overline{2, 1, 1, 1, 2, 18}\right]$ |
| $\sqrt{89} = \left[9; \overline{2, 3, 3, 2, 18}\right]$ |
| $\sqrt{90} = \left[9; \overline{2, 18}\right]$ |
| $\sqrt{91} = \left[9; \overline{1, 1, 5, 1, 5, 1, 1, 18}\right]$ |
| $\sqrt{92} = \left[9; \overline{1, 1, 2, 4, 2, 1, 1, 18}\right]$ |
| $\sqrt{93} = \left[9; \overline{1, 1, 1, 4, 6, 4, 1, 1, 1, 18}\right]$ |
| $\sqrt{94} = \left[9; \overline{1, 2, 3, 1, 1, 5, 1, 8, 1, 5, 1, 1, 3, 2, 1, 18}\right]$ |
| $\sqrt{95} = \left[9; \overline{1, 2, 1, 18}\right]$ |
| $\sqrt{96} = \left[9; \overline{1, 3, 1, 18}\right]$ |
| $\sqrt{97} = \left[9; \overline{1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18}\right]$ |
| $\sqrt{98} = \left[9; \overline{1, 8, 1, 18}\right]$ |
| $\sqrt{99} = \left[9; \overline{1, 18}\right]$ |
| $\sqrt{101} = \left[10; \overline{20}\right]$ |
| $\sqrt{102} = \left[10; \overline{10, 20}\right]$ |
| $\sqrt{103} = \left[10; \overline{6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20}\right]$ |
| $\sqrt{104} = \left[10; \overline{5, 20}\right]$ |
| $\sqrt{105} = \left[10; \overline{4, 20}\right]$ |
| $\sqrt{106} = \left[10; \overline{3, 2, 1, 1, 1, 1, 2, 3, 20}\right]$ |
| $\sqrt{107} = \left[10; \overline{2, 1, 9, 1, 2, 20}\right]$ |
| $\sqrt{108} = \left[10; \overline{2, 1, 1, 4, 1, 1, 2, 20}\right]$ |
| $\sqrt{109} = \left[10; \overline{2, 3, 1, 2, 4, 1, 6, 6, 1, 4, 2, 1, 3, 2, 20}\right]$ |
| $\sqrt{110} = \left[10; \overline{2, 20}\right]$ |
| $\sqrt{111} = \left[10; \overline{1, 1, 6, 1, 1, 20}\right]$ |
| $\sqrt{112} = \left[10; \overline{1, 1, 2, 1, 1, 20}\right]$ |
| $\sqrt{113} = \left[10; \overline{1, 1, 1, 2, 2, 1, 1, 1, 20}\right]$ |
| $\sqrt{114} = \left[10; \overline{1, 2, 10, 2, 1, 20}\right]$ |
| $\sqrt{115} = \left[10; \overline{1, 2, 1, 1, 1, 1, 1, 2, 1, 20}\right]$ |
| $\sqrt{116} = \left[10; \overline{1, 3, 2, 1, 4, 1, 2, 3, 1, 20}\right]$ |
| $\sqrt{117} = \left[10; \overline{1, 4, 2, 4, 1, 20}\right]$ |
| $\sqrt{118} = \left[10; \overline{1, 6, 3, 2, 10, 2, 3, 6, 1, 20}\right]$ |
| $\sqrt{119} = \left[10; \overline{1, 9, 1, 20}\right]$ |
| $\sqrt{120} = \left[10; \overline{1, 20}\right]$ |
| $\sqrt{122} = \left[11; \overline{22}\right]$ |
| $\sqrt{123} = \left[11; \overline{11, 22}\right]$ |
| $\sqrt{124} = \left[11; \overline{7, 2, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 2, 7, 22}\right]$ |
| $\sqrt{125} = \left[11; \overline{5, 1, 1, 5, 22}\right]$ |
| $\sqrt{126} = \left[11; \overline{4, 2, 4, 22}\right]$ |
| $\sqrt{127} = \left[11; \overline{3, 1, 2, 2, 7, 11, 7, 2, 2, 1, 3, 22}\right]$ |
| $\sqrt{128} = \left[11; \overline{3, 5, 3, 22}\right]$ |
| $\sqrt{129} = \left[11; \overline{2, 1, 3, 1, 6, 1, 3, 1, 2, 22}\right]$ |
| $\sqrt{130} = \left[11; \overline{2, 2, 22}\right]$ |
| $\sqrt{131} = \left[11; \overline{2, 4, 11, 4, 2, 22}\right]$ |
| $\sqrt{132} = \left[11; \overline{2, 22}\right]$ |
| $\sqrt{133} = \left[11; \overline{1, 1, 7, 5, 1, 1, 1, 2, 1, 1, 1, 5, 7, 1, 1, 22}\right]$ |
| $\sqrt{134} = \left[11; \overline{1, 1, 2, 1, 3, 1, 10, 1, 3, 1, 2, 1, 1, 22}\right]$ |
| $\sqrt{135} = \left[11; \overline{1, 1, 1, 1, 1, 1, 1, 22}\right]$ |
| $\sqrt{136} = \left[11; \overline{1, 1, 1, 22}\right]$ |
| $\sqrt{137} = \left[11; \overline{1, 2, 2, 1, 1, 2, 2, 1, 22}\right]$ |
| $\sqrt{138} = \left[11; \overline{1, 2, 1, 22}\right]$ |
| $\sqrt{139} = \left[11; \overline{1, 3, 1, 3, 7, 1, 1, 2, 11, 2, 1, 1, 7, 3, 1, 3, 1, 22}\right]$ |
| $\sqrt{140} = \left[11; \overline{1, 4, 1, 22}\right]$ |
| $\sqrt{141} = \left[11; \overline{1, 6, 1, 22}\right]$ |
| $\sqrt{142} = \left[11; \overline{1, 10, 1, 22}\right]$ |
| $\sqrt{143} = \left[11; \overline{1, 22}\right]$ |
| $\sqrt{145} = \left[12; \overline{24}\right]$ |
| $\sqrt{146} = \left[12; \overline{12, 24}\right]$ |
| $\sqrt{147} = \left[12; \overline{8, 24}\right]$ |
| $\sqrt{148} = \left[12; \overline{6, 24}\right]$ |
| $\sqrt{149} = \left[12; \overline{4, 1, 5, 3, 3, 5, 1, 4, 24}\right]$ |
| $\sqrt{150} = \left[12; \overline{4, 24}\right]$ |
| $\sqrt{151} = \left[12; \overline{3, 2, 7, 1, 3, 4, 1, 1, 1, 11, 1, 1, 1, 4, 3, 1, 7, 2, 3, 24}\right]$ |
| $\sqrt{152} = \left[12; \overline{3, 24}\right]$ |
| $\sqrt{153} = \left[12; \overline{2, 1, 2, 2, 2, 1, 2, 24}\right]$ |
| $\sqrt{154} = \left[12; \overline{2, 2, 3, 1, 2, 1, 3, 2, 2, 24}\right]$ |
| $\sqrt{155} = \left[12; \overline{2, 4, 2, 24}\right]$ |
| $\sqrt{156} = \left[12; \overline{2, 24}\right]$ |
| $\sqrt{157} = \left[12; \overline{1, 1, 7, 1, 5, 2, 1, 1, 1, 1, 2, 5, 1, 7, 1, 1, 24}\right]$ |
| $\sqrt{158} = \left[12; \overline{1, 1, 3, 12, 3, 1, 1, 24}\right]$ |
| $\sqrt{159} = \left[12; \overline{1, 1, 1, 1, 3, 1, 1, 1, 1, 24}\right]$ |
| $\sqrt{160} = \left[12; \overline{1, 1, 1, 5, 1, 1, 1, 24}\right]$ |
| $\sqrt{161} = \left[12; \overline{1, 2, 4, 1, 2, 1, 4, 2, 1, 24}\right]$ |
| $\sqrt{162} = \left[12; \overline{1, 2, 1, 2, 12, 2, 1, 2, 1, 24}\right]$ |
| $\sqrt{163} = \left[12; \overline{1, 3, 3, 2, 1, 1, 7, 1, 11, 1, 7, 1, 1, 2, 3, 3, 1, 24}\right]$ |
| $\sqrt{164} = \left[12; \overline{1, 4, 6, 4, 1, 24}\right]$ |
| $\sqrt{165} = \left[12; \overline{1, 5, 2, 5, 1, 24}\right]$ |
| $\sqrt{166} = \left[12; \overline{1, 7, 1, 1, 1, 2, 4, 1, 3, 2, 12, 2, 3, 1, 4, 2, 1, 1, 1, 7, 1, 24}\right]$ |
| $\sqrt{167} = \left[12; \overline{1, 11, 1, 24}\right]$ |
| $\sqrt{168} = \left[12; \overline{1, 24}\right]$ |
| $\sqrt{170} = \left[13; \overline{26}\right]$ |
| $\sqrt{171} = \left[13; \overline{13, 26}\right]$ |
| $\sqrt{172} = \left[13; \overline{8, 1, 2, 2, 1, 1, 3, 6, 3, 1, 1, 2, 2, 1, 8, 26}\right]$ |
| $\sqrt{173} = \left[13; \overline{6, 1, 1, 6, 26}\right]$ |
| $\sqrt{174} = \left[13; \overline{5, 4, 5, 26}\right]$ |
| $\sqrt{175} = \left[13; \overline{4, 2, 1, 2, 4, 26}\right]$ |
| $\sqrt{176} = \left[13; \overline{3, 1, 3, 26}\right]$ |
| $\sqrt{177} = \left[13; \overline{3, 3, 2, 8, 2, 3, 3, 26}\right]$ |
| $\sqrt{178} = \left[13; \overline{2, 1, 12, 1, 2, 26}\right]$ |
| $\sqrt{179} = \left[13; \overline{2, 1, 1, 1, 3, 5, 13, 5, 3, 1, 1, 1, 2, 26}\right]$ |
| $\sqrt{180} = \left[13; \overline{2, 2, 2, 26}\right]$ |
| $\sqrt{181} = \left[13; \overline{2, 4, 1, 8, 6, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 6, 8, 1, 4, 2, 26}\right]$ |
| $\sqrt{182} = \left[13; \overline{2, 26}\right]$ |
| $\sqrt{183} = \left[13; \overline{1, 1, 8, 1, 1, 26}\right]$ |
| $\sqrt{184} = \left[13; \overline{1, 1, 3, 2, 1, 2, 1, 2, 3, 1, 1, 26}\right]$ |
| $\sqrt{185} = \left[13; \overline{1, 1, 1, 1, 26}\right]$ |
| $\sqrt{186} = \left[13; \overline{1, 1, 1, 3, 4, 3, 1, 1, 1, 26}\right]$ |
| $\sqrt{187} = \left[13; \overline{1, 2, 13, 2, 1, 26}\right]$ |
| $\sqrt{188} = \left[13; \overline{1, 2, 2, 6, 2, 2, 1, 26}\right]$ |
| $\sqrt{189} = \left[13; \overline{1, 2, 1, 26}\right]$ |
| $\sqrt{190} = \left[13; \overline{1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 3, 1, 26}\right]$ |
| $\sqrt{191} = \left[13; \overline{1, 4, 1, 1, 3, 2, 2, 13, 2, 2, 3, 1, 1, 4, 1, 26}\right]$ |
| $\sqrt{192} = \left[13; \overline{1, 5, 1, 26}\right]$ |
| $\sqrt{193} = \left[13; \overline{1, 8, 3, 2, 1, 3, 3, 1, 2, 3, 8, 1, 26}\right]$ |
| $\sqrt{194} = \left[13; \overline{1, 12, 1, 26}\right]$ |
| $\sqrt{195} = \left[13; \overline{1, 26}\right]$ |
| $\sqrt{197} = \left[14; \overline{28}\right]$ |
| $\sqrt{198} = \left[14; \overline{14, 28}\right]$ |
| $\sqrt{199} = \left[14; \overline{9, 2, 1, 2, 2, 5, 4, 1, 1, 13, 1, 1, 4, 5, 2, 2, 1, 2, 9, 28}\right]$ |
| $\sqrt{200} = \left[14; \overline{7, 28}\right]$ |
| $\sqrt{201} = \left[14; \overline{5, 1, 1, 1, 2, 1, 8, 1, 2, 1, 1, 1, 5, 28}\right]$ |
| $\sqrt{202} = \left[14; \overline{4, 1, 2, 2, 1, 4, 28}\right]$ |
| $\sqrt{203} = \left[14; \overline{4, 28}\right]$ |
| $\sqrt{204} = \left[14; \overline{3, 1, 1, 6, 1, 1, 3, 28}\right]$ |
| $\sqrt{205} = \left[14; \overline{3, 6, 1, 4, 1, 6, 3, 28}\right]$ |
| $\sqrt{206} = \left[14; \overline{2, 1, 5, 14, 5, 1, 2, 28}\right]$ |
| $\sqrt{207} = \left[14; \overline{2, 1, 1, 2, 1, 1, 2, 28}\right]$ |
| $\sqrt{208} = \left[14; \overline{2, 2, 1, 2, 2, 28}\right]$ |
| $\sqrt{209} = \left[14; \overline{2, 5, 3, 2, 3, 5, 2, 28}\right]$ |
| $\sqrt{210} = \left[14; \overline{2, 28}\right]$ |
| $\sqrt{211} = \left[14; \overline{1, 1, 9, 5, 1, 2, 2, 1, 1, 4, 3, 1, 13, 1, 3, 4, 1, 1, 2, 2, 1, 5, 9, 1, 1, 28}\right]$ |
| $\sqrt{212} = \left[14; \overline{1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 3, 1, 1, 28}\right]$ |
| $\sqrt{213} = \left[14; \overline{1, 1, 2, 6, 1, 8, 1, 6, 2, 1, 1, 28}\right]$ |
| $\sqrt{214} = \left[14; \overline{1, 1, 1, 2, 3, 1, 4, 9, 1, 1, 5, 3, 14, 3, 5, 1, 1, 9, 4, 1, 3, 2, 1, 1, 1, 28}\right]$ |
| $\sqrt{215} = \left[14; \overline{1, 1, 1, 28}\right]$ |
| $\sqrt{216} = \left[14; \overline{1, 2, 3, 2, 1, 28}\right]$ |
| $\sqrt{217} = \left[14; \overline{1, 2, 1, 2, 1, 1, 9, 4, 9, 1, 1, 2, 1, 2, 1, 28}\right]$ |
| $\sqrt{218} = \left[14; \overline{1, 3, 3, 1, 28}\right]$ |
| $\sqrt{219} = \left[14; \overline{1, 3, 1, 28}\right]$ |
| $\sqrt{220} = \left[14; \overline{1, 4, 1, 28}\right]$ |
| $\sqrt{221} = \left[14; \overline{1, 6, 2, 6, 1, 28}\right]$ |
| $\sqrt{222} = \left[14; \overline{1, 8, 1, 28}\right]$ |
| $\sqrt{223} = \left[14; \overline{1, 13, 1, 28}\right]$ |
| $\sqrt{224} = \left[14; \overline{1, 28}\right]$ |
| $\sqrt{226} = \left[15; \overline{30}\right]$ |
| $\sqrt{227} = \left[15; \overline{15, 30}\right]$ |
| $\sqrt{228} = \left[15; \overline{10, 30}\right]$ |
| $\sqrt{229} = \left[15; \overline{7, 1, 1, 7, 30}\right]$ |
| $\sqrt{230} = \left[15; \overline{6, 30}\right]$ |
| $\sqrt{231} = \left[15; \overline{5, 30}\right]$ |
| $\sqrt{232} = \left[15; \overline{4, 3, 7, 3, 4, 30}\right]$ |
| $\sqrt{233} = \left[15; \overline{3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 30}\right]$ |
| $\sqrt{234} = \left[15; \overline{3, 2, 1, 2, 1, 2, 3, 30}\right]$ |
| $\sqrt{235} = \left[15; \overline{3, 30}\right]$ |
| $\sqrt{236} = \left[15; \overline{2, 1, 3, 5, 1, 6, 1, 5, 3, 1, 2, 30}\right]$ |
| $\sqrt{237} = \left[15; \overline{2, 1, 1, 7, 10, 7, 1, 1, 2, 30}\right]$ |
| $\sqrt{238} = \left[15; \overline{2, 2, 1, 14, 1, 2, 2, 30}\right]$ |
| $\sqrt{239} = \left[15; \overline{2, 5, 1, 2, 4, 15, 4, 2, 1, 5, 2, 30}\right]$ |
| $\sqrt{240} = \left[15; \overline{2, 30}\right]$ |
| $\sqrt{241} = \left[15; \overline{1, 1, 9, 1, 5, 3, 3, 1, 1, 3, 3, 5, 1, 9, 1, 1, 30}\right]$ |
| $\sqrt{242} = \left[15; \overline{1, 1, 3, 1, 14, 1, 3, 1, 1, 30}\right]$ |
| $\sqrt{243} = \left[15; \overline{1, 1, 2, 3, 15, 3, 2, 1, 1, 30}\right]$ |
| $\sqrt{244} = \left[15; \overline{1, 1, 1, 1, 1, 2, 1, 5, 1, 1, 9, 1, 6, 1, 9, 1, 1, 5, 1, 2, 1, 1, 1, 1, 1, 30}\right]$ |
| $\sqrt{245} = \left[15; \overline{1, 1, 1, 7, 6, 7, 1, 1, 1, 30}\right]$ |
| $\sqrt{246} = \left[15; \overline{1, 2, 5, 1, 14, 1, 5, 2, 1, 30}\right]$ |
| $\sqrt{247} = \left[15; \overline{1, 2, 1, 1, 9, 1, 9, 1, 1, 2, 1, 30}\right]$ |
| $\sqrt{248} = \left[15; \overline{1, 2, 1, 30}\right]$ |
| $\sqrt{249} = \left[15; \overline{1, 3, 1, 1, 5, 1, 3, 10, 3, 1, 5, 1, 1, 3, 1, 30}\right]$ |
| $\sqrt{250} = \left[15; \overline{1, 4, 3, 3, 4, 1, 30}\right]$ |
| $\sqrt{251} = \left[15; \overline{1, 5, 2, 1, 2, 2, 15, 2, 2, 1, 2, 5, 1, 30}\right]$ |
| $\sqrt{252} = \left[15; \overline{1, 6, 1, 30}\right]$ |
| $\sqrt{253} = \left[15; \overline{1, 9, 1, 1, 1, 2, 1, 7, 4, 2, 2, 2, 4, 7, 1, 2, 1, 1, 1, 9, 1, 30}\right]$ |
| $\sqrt{254} = \left[15; \overline{1, 14, 1, 30}\right]$ |
| $\sqrt{255} = \left[15; \overline{1, 30}\right]$ |
| $\sqrt{257} = \left[16; \overline{32}\right]$ |
| $\sqrt{258} = \left[16; \overline{16, 32}\right]$ |
| $\sqrt{259} = \left[16; \overline{10, 1, 2, 3, 4, 3, 2, 1, 10, 32}\right]$ |
| $\sqrt{260} = \left[16; \overline{8, 32}\right]$ |
| $\sqrt{261} = \left[16; \overline{6, 2, 3, 7, 1, 3, 1, 2, 1, 3, 1, 7, 3, 2, 6, 32}\right]$ |
| $\sqrt{262} = \left[16; \overline{5, 2, 1, 2, 1, 10, 16, 10, 1, 2, 1, 2, 5, 32}\right]$ |
| $\sqrt{263} = \left[16; \overline{4, 1, 1, 1, 1, 15, 1, 1, 1, 1, 4, 32}\right]$ |
| $\sqrt{264} = \left[16; \overline{4, 32}\right]$ |
| $\sqrt{265} = \left[16; \overline{3, 1, 1, 2, 2, 1, 1, 3, 32}\right]$ |
| $\sqrt{266} = \left[16; \overline{3, 4, 3, 32}\right]$ |
| $\sqrt{267} = \left[16; \overline{2, 1, 15, 1, 2, 32}\right]$ |
| $\sqrt{268} = \left[16; \overline{2, 1, 2, 3, 3, 1, 3, 1, 10, 8, 10, 1, 3, 1, 3, 3, 2, 1, 2, 32}\right]$ |
| $\sqrt{269} = \left[16; \overline{2, 2, 32}\right]$ |
| $\sqrt{270} = \left[16; \overline{2, 3, 6, 3, 2, 32}\right]$ |
| $\sqrt{271} = \left[16; \overline{2, 6, 10, 1, 4, 1, 1, 2, 1, 2, 1, 15, 1, 2, 1, 2, 1, 1, 4, 1, 10, 6, 2, 32}\right]$ |
| $\sqrt{272} = \left[16; \overline{2, 32}\right]$ |
| $\sqrt{273} = \left[16; \overline{1, 1, 10, 1, 1, 32}\right]$ |
| $\sqrt{274} = \left[16; \overline{1, 1, 4, 4, 1, 1, 32}\right]$ |
| $\sqrt{275} = \left[16; \overline{1, 1, 2, 1, 1, 32}\right]$ |
| $\sqrt{276} = \left[16; \overline{1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 32}\right]$ |
| $\sqrt{277} = \left[16; \overline{1, 1, 1, 4, 10, 1, 7, 2, 2, 3, 3, 2, 2, 7, 1, 10, 4, 1, 1, 1, 32}\right]$ |
| $\sqrt{278} = \left[16; \overline{1, 2, 16, 2, 1, 32}\right]$ |
| $\sqrt{279} = \left[16; \overline{1, 2, 2, 1, 2, 2, 1, 32}\right]$ |
| $\sqrt{280} = \left[16; \overline{1, 2, 1, 2, 1, 32}\right]$ |
| $\sqrt{281} = \left[16; \overline{1, 3, 4, 1, 1, 6, 6, 1, 1, 4, 3, 1, 32}\right]$ |
| $\sqrt{282} = \left[16; \overline{1, 3, 1, 4, 1, 3, 1, 32}\right]$ |
| $\sqrt{283} = \left[16; \overline{1, 4, 1, 1, 1, 3, 10, 1, 15, 1, 10, 3, 1, 1, 1, 4, 1, 32}\right]$ |
| $\sqrt{284} = \left[16; \overline{1, 5, 1, 3, 2, 1, 4, 8, 4, 1, 2, 3, 1, 5, 1, 32}\right]$ |
| $\sqrt{285} = \left[16; \overline{1, 7, 2, 7, 1, 32}\right]$ |
| $\sqrt{286} = \left[16; \overline{1, 10, 3, 3, 2, 3, 3, 10, 1, 32}\right]$ |
| $\sqrt{287} = \left[16; \overline{1, 15, 1, 32}\right]$ |
| $\sqrt{288} = \left[16; \overline{1, 32}\right]$ |
| $\sqrt{290} = \left[17; \overline{34}\right]$ |
| $\sqrt{291} = \left[17; \overline{17, 34}\right]$ |
| $\sqrt{292} = \left[17; \overline{11, 2, 1, 3, 8, 3, 1, 2, 11, 34}\right]$ |
| $\sqrt{293} = \left[17; \overline{8, 1, 1, 8, 34}\right]$ |
| $\sqrt{294} = \left[17; \overline{6, 1, 4, 1, 6, 34}\right]$ |
| $\sqrt{295} = \left[17; \overline{5, 1, 2, 3, 2, 6, 2, 3, 2, 1, 5, 34}\right]$ |
| $\sqrt{296} = \left[17; \overline{4, 1, 7, 1, 4, 34}\right]$ |
| $\sqrt{297} = \left[17; \overline{4, 3, 1, 1, 2, 1, 1, 3, 4, 34}\right]$ |
| $\sqrt{298} = \left[17; \overline{3, 1, 4, 5, 1, 1, 5, 4, 1, 3, 34}\right]$ |
| $\sqrt{299} = \left[17; \overline{3, 2, 3, 34}\right]$ |
| $\sqrt{300} = \left[17; \overline{3, 8, 3, 34}\right]$ |
| $\sqrt{301} = \left[17; \overline{2, 1, 6, 3, 1, 2, 2, 1, 1, 8, 11, 2, 4, 2, 11, 8, 1, 1, 2, 2, 1, 3, 6, 1, 2, 34}\right]$ |
| $\sqrt{302} = \left[17; \overline{2, 1, 1, 1, 4, 2, 1, 16, 1, 2, 4, 1, 1, 1, 2, 34}\right]$ |
| $\sqrt{303} = \left[17; \overline{2, 2, 5, 2, 2, 34}\right]$ |
| $\sqrt{304} = \left[17; \overline{2, 3, 2, 1, 1, 1, 1, 1, 2, 3, 2, 34}\right]$ |
| $\sqrt{305} = \left[17; \overline{2, 6, 2, 34}\right]$ |
| $\sqrt{306} = \left[17; \overline{2, 34}\right]$ |
| $\sqrt{307} = \left[17; \overline{1, 1, 11, 5, 1, 3, 17, 3, 1, 5, 11, 1, 1, 34}\right]$ |
| $\sqrt{308} = \left[17; \overline{1, 1, 4, 1, 1, 34}\right]$ |
| $\sqrt{309} = \left[17; \overline{1, 1, 2, 1, 2, 4, 1, 1, 1, 8, 6, 1, 10, 1, 6, 8, 1, 1, 1, 4, 2, 1, 2, 1, 1, 34}\right]$ |
| $\sqrt{310} = \left[17; \overline{1, 1, 1, 1, 5, 3, 1, 2, 1, 3, 5, 1, 1, 1, 1, 34}\right]$ |
| $\sqrt{311} = \left[17; \overline{1, 1, 1, 2, 1, 6, 3, 17, 3, 6, 1, 2, 1, 1, 1, 34}\right]$ |
| $\sqrt{312} = \left[17; \overline{1, 1, 1, 34}\right]$ |
| $\sqrt{313} = \left[17; \overline{1, 2, 4, 11, 1, 1, 3, 2, 2, 3, 1, 1, 11, 4, 2, 1, 34}\right]$ |
| $\sqrt{314} = \left[17; \overline{1, 2, 1, 1, 2, 1, 34}\right]$ |
| $\sqrt{315} = \left[17; \overline{1, 2, 1, 34}\right]$ |
| $\sqrt{316} = \left[17; \overline{1, 3, 2, 8, 2, 3, 1, 34}\right]$ |
| $\sqrt{317} = \left[17; \overline{1, 4, 8, 1, 2, 2, 1, 8, 4, 1, 34}\right]$ |
| $\sqrt{318} = \left[17; \overline{1, 4, 1, 34}\right]$ |
| $\sqrt{319} = \left[17; \overline{1, 6, 5, 1, 4, 3, 1, 3, 4, 1, 5, 6, 1, 34}\right]$ |
| $\sqrt{320} = \left[17; \overline{1, 7, 1, 34}\right]$ |
| $\sqrt{321} = \left[17; \overline{1, 10, 1, 34}\right]$ |
| $\sqrt{322} = \left[17; \overline{1, 16, 1, 34}\right]$ |
| $\sqrt{323} = \left[17; \overline{1, 34}\right]$ |
| $\sqrt{325} = \left[18; \overline{36}\right]$ |
| $\sqrt{326} = \left[18; \overline{18, 36}\right]$ |
| $\sqrt{327} = \left[18; \overline{12, 36}\right]$ |
| $\sqrt{328} = \left[18; \overline{9, 36}\right]$ |
| $\sqrt{329} = \left[18; \overline{7, 4, 2, 1, 1, 4, 1, 1, 2, 4, 7, 36}\right]$ |
| $\sqrt{330} = \left[18; \overline{6, 36}\right]$ |
| $\sqrt{331} = \left[18; \overline{5, 5, 1, 6, 2, 3, 1, 1, 2, 1, 2, 1, 11, 2, 1, 1, 17, 1, 1, 2, 11, 1, 2, 1, 2, 1, 1, 3, 2, 6, 1, 5, 5, 36}\right]$ |
| $\sqrt{332} = \left[18; \overline{4, 1, 1, 8, 1, 1, 4, 36}\right]$ |
| $\sqrt{333} = \left[18; \overline{4, 36}\right]$ |
| $\sqrt{334} = \left[18; \overline{3, 1, 1, 1, 2, 5, 1, 2, 2, 11, 1, 3, 7, 18, 7, 3, 1, 11, 2, 2, 1, 5, 2, 1, 1, 1, 3, 36}\right]$ |
| $\sqrt{335} = \left[18; \overline{3, 3, 3, 36}\right]$ |
| $\sqrt{336} = \left[18; \overline{3, 36}\right]$ |
| $\sqrt{337} = \left[18; \overline{2, 1, 3, 1, 11, 2, 4, 1, 3, 3, 1, 4, 2, 11, 1, 3, 1, 2, 36}\right]$ |
| $\sqrt{338} = \left[18; \overline{2, 1, 1, 2, 36}\right]$ |
| $\sqrt{339} = \left[18; \overline{2, 2, 2, 1, 17, 1, 2, 2, 2, 36}\right]$ |
| $\sqrt{340} = \left[18; \overline{2, 3, 1, 1, 1, 1, 8, 1, 1, 1, 1, 3, 2, 36}\right]$ |
| $\sqrt{341} = \left[18; \overline{2, 6, 1, 8, 2, 1, 2, 1, 2, 8, 1, 6, 2, 36}\right]$ |
| $\sqrt{342} = \left[18; \overline{2, 36}\right]$ |
| $\sqrt{343} = \left[18; \overline{1, 1, 11, 1, 5, 3, 1, 17, 1, 3, 5, 1, 11, 1, 1, 36}\right]$ |
| $\sqrt{344} = \left[18; \overline{1, 1, 4, 1, 3, 1, 4, 1, 1, 36}\right]$ |
| $\sqrt{345} = \left[18; \overline{1, 1, 2, 1, 6, 1, 2, 1, 1, 36}\right]$ |
| $\sqrt{346} = \left[18; \overline{1, 1, 1, 1, 36}\right]$ |
| $\sqrt{347} = \left[18; \overline{1, 1, 1, 2, 4, 1, 17, 1, 4, 2, 1, 1, 1, 36}\right]$ |
| $\sqrt{348} = \left[18; \overline{1, 1, 1, 8, 1, 1, 1, 36}\right]$ |
| $\sqrt{349} = \left[18; \overline{1, 2, 7, 7, 2, 1, 36}\right]$ |
| $\sqrt{350} = \left[18; \overline{1, 2, 2, 2, 1, 36}\right]$ |
| $\sqrt{351} = \left[18; \overline{1, 2, 1, 3, 2, 2, 2, 3, 1, 2, 1, 36}\right]$ |
| $\sqrt{352} = \left[18; \overline{1, 3, 5, 9, 5, 3, 1, 36}\right]$ |
| $\sqrt{353} = \left[18; \overline{1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 36}\right]$ |
| $\sqrt{354} = \left[18; \overline{1, 4, 2, 2, 18, 2, 2, 4, 1, 36}\right]$ |
| $\sqrt{355} = \left[18; \overline{1, 5, 3, 3, 1, 6, 1, 3, 3, 5, 1, 36}\right]$ |
| $\sqrt{356} = \left[18; \overline{1, 6, 1, 1, 2, 1, 8, 1, 2, 1, 1, 6, 1, 36}\right]$ |
| $\sqrt{357} = \left[18; \overline{1, 8, 2, 8, 1, 36}\right]$ |
| $\sqrt{358} = \left[18; \overline{1, 11, 1, 1, 1, 3, 1, 1, 4, 1, 5, 2, 18, 2, 5, 1, 4, 1, 1, 3, 1, 1, 1, 11, 1, 36}\right]$ |
| $\sqrt{359} = \left[18; \overline{1, 17, 1, 36}\right]$ |
| $\sqrt{360} = \left[18; \overline{1, 36}\right]$ |
| $\sqrt{362} = \left[19; \overline{38}\right]$ |
| $\sqrt{363} = \left[19; \overline{19, 38}\right]$ |
| $\sqrt{364} = \left[19; \overline{12, 1, 2, 3, 1, 8, 1, 3, 2, 1, 12, 38}\right]$ |
| $\sqrt{365} = \left[19; \overline{9, 1, 1, 9, 38}\right]$ |
| $\sqrt{366} = \left[19; \overline{7, 1, 1, 1, 2, 12, 2, 1, 1, 1, 7, 38}\right]$ |
| $\sqrt{367} = \left[19; \overline{6, 2, 1, 3, 1, 1, 2, 1, 12, 19, 12, 1, 2, 1, 1, 3, 1, 2, 6, 38}\right]$ |
| $\sqrt{368} = \left[19; \overline{5, 2, 5, 38}\right]$ |
| $\sqrt{369} = \left[19; \overline{4, 1, 3, 2, 7, 4, 7, 2, 3, 1, 4, 38}\right]$ |
| $\sqrt{370} = \left[19; \overline{4, 4, 38}\right]$ |
| $\sqrt{371} = \left[19; \overline{3, 1, 4, 1, 3, 38}\right]$ |
| $\sqrt{372} = \left[19; \overline{3, 2, 12, 2, 3, 38}\right]$ |
| $\sqrt{373} = \left[19; \overline{3, 5, 5, 3, 38}\right]$ |
| $\sqrt{374} = \left[19; \overline{2, 1, 18, 1, 2, 38}\right]$ |
| $\sqrt{375} = \left[19; \overline{2, 1, 2, 1, 5, 1, 2, 1, 2, 38}\right]$ |
| $\sqrt{376} = \left[19; \overline{2, 1, 1, 3, 1, 2, 2, 4, 2, 2, 1, 3, 1, 1, 2, 38}\right]$ |
| $\sqrt{377} = \left[19; \overline{2, 2, 2, 38}\right]$ |
| $\sqrt{378} = \left[19; \overline{2, 3, 1, 4, 1, 3, 2, 38}\right]$ |
| $\sqrt{379} = \left[19; \overline{2, 7, 3, 2, 2, 6, 12, 1, 4, 1, 1, 1, 3, 4, 19, 4, 3, 1, 1, 1, 4, 1, 12, 6, 2, 2, 3, 7, 2, 38}\right]$ |
| $\sqrt{380} = \left[19; \overline{2, 38}\right]$ |
| $\sqrt{381} = \left[19; \overline{1, 1, 12, 1, 1, 38}\right]$ |
| $\sqrt{382} = \left[19; \overline{1, 1, 5, 12, 1, 5, 1, 1, 2, 3, 1, 18, 1, 3, 2, 1, 1, 5, 1, 12, 5, 1, 1, 38}\right]$ |
| $\sqrt{383} = \left[19; \overline{1, 1, 3, 19, 3, 1, 1, 38}\right]$ |
| $\sqrt{384} = \left[19; \overline{1, 1, 2, 9, 2, 1, 1, 38}\right]$ |
| $\sqrt{385} = \left[19; \overline{1, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 1, 1, 1, 38}\right]$ |
| $\sqrt{386} = \left[19; \overline{1, 1, 1, 4, 1, 18, 1, 4, 1, 1, 1, 38}\right]$ |
| $\sqrt{387} = \left[19; \overline{1, 2, 19, 2, 1, 38}\right]$ |
| $\sqrt{388} = \left[19; \overline{1, 2, 3, 4, 12, 1, 8, 1, 12, 4, 3, 2, 1, 38}\right]$ |
| $\sqrt{389} = \left[19; \overline{1, 2, 1, 1, 1, 1, 2, 1, 38}\right]$ |
| $\sqrt{390} = \left[19; \overline{1, 2, 1, 38}\right]$ |
| $\sqrt{391} = \left[19; \overline{1, 3, 2, 2, 1, 1, 2, 19, 2, 1, 1, 2, 2, 3, 1, 38}\right]$ |
| $\sqrt{392} = \left[19; \overline{1, 3, 1, 38}\right]$ |
| $\sqrt{393} = \left[19; \overline{1, 4, 1, 2, 4, 1, 1, 1, 1, 12, 1, 1, 1, 1, 4, 2, 1, 4, 1, 38}\right]$ |
| $\sqrt{394} = \left[19; \overline{1, 5, 1, 1, 1, 3, 1, 3, 5, 2, 2, 5, 3, 1, 3, 1, 1, 1, 5, 1, 38}\right]$ |
| $\sqrt{395} = \left[19; \overline{1, 6, 1, 38}\right]$ |
| $\sqrt{396} = \left[19; \overline{1, 8, 1, 38}\right]$ |
| $\sqrt{397} = \left[19; \overline{1, 12, 3, 4, 9, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 9, 4, 3, 12, 1, 38}\right]$ |
| $\sqrt{398} = \left[19; \overline{1, 18, 1, 38}\right]$ |
| $\sqrt{399} = \left[19; \overline{1, 38}\right]$ |
| $\sqrt{401} = \left[20; \overline{40}\right]$ |
| $\sqrt{402} = \left[20; \overline{20, 40}\right]$ |
| $\sqrt{403} = \left[20; \overline{13, 2, 1, 3, 1, 3, 1, 2, 13, 40}\right]$ |
| $\sqrt{404} = \left[20; \overline{10, 40}\right]$ |
| $\sqrt{405} = \left[20; \overline{8, 40}\right]$ |
| $\sqrt{406} = \left[20; \overline{6, 1, 2, 4, 7, 1, 4, 1, 7, 4, 2, 1, 6, 40}\right]$ |
| $\sqrt{407} = \left[20; \overline{5, 1, 2, 1, 5, 40}\right]$ |
| $\sqrt{408} = \left[20; \overline{5, 40}\right]$ |
| $\sqrt{409} = \left[20; \overline{4, 2, 7, 1, 1, 1, 4, 2, 2, 13, 13, 2, 2, 4, 1, 1, 1, 7, 2, 4, 40}\right]$ |
| $\sqrt{410} = \left[20; \overline{4, 40}\right]$ |
| $\sqrt{411} = \left[20; \overline{3, 1, 1, 1, 19, 1, 1, 1, 3, 40}\right]$ |
| $\sqrt{412} = \left[20; \overline{3, 2, 1, 3, 1, 4, 3, 2, 13, 10, 13, 2, 3, 4, 1, 3, 1, 2, 3, 40}\right]$ |
| $\sqrt{413} = \left[20; \overline{3, 9, 1, 4, 1, 9, 3, 40}\right]$ |
| $\sqrt{414} = \left[20; \overline{2, 1, 7, 2, 7, 1, 2, 40}\right]$ |
| $\sqrt{415} = \left[20; \overline{2, 1, 2, 4, 6, 1, 1, 3, 1, 1, 6, 4, 2, 1, 2, 40}\right]$ |
| $\sqrt{416} = \left[20; \overline{2, 1, 1, 9, 1, 1, 2, 40}\right]$ |
| $\sqrt{417} = \left[20; \overline{2, 2, 1, 1, 1, 5, 4, 1, 12, 1, 4, 5, 1, 1, 1, 2, 2, 40}\right]$ |
| $\sqrt{418} = \left[20; \overline{2, 4, 20, 4, 2, 40}\right]$ |
| $\sqrt{419} = \left[20; \overline{2, 7, 1, 2, 3, 1, 2, 1, 19, 1, 2, 1, 3, 2, 1, 7, 2, 40}\right]$ |
| $\sqrt{420} = \left[20; \overline{2, 40}\right]$ |
| $\sqrt{421} = \left[20; \overline{1, 1, 13, 5, 1, 3, 1, 2, 1, 1, 1, 2, 9, 1, 7, 3, 3, 2, 2, 3, 3, 7, 1, 9, 2, 1, 1, 1, 2, 1, 3, 1, 5, 13, 1, 1, 40}\right]$ |
| $\sqrt{422} = \left[20; \overline{1, 1, 5, 2, 1, 3, 20, 3, 1, 2, 5, 1, 1, 40}\right]$ |
| $\sqrt{423} = \left[20; \overline{1, 1, 3, 4, 3, 1, 1, 40}\right]$ |
| $\sqrt{424} = \left[20; \overline{1, 1, 2, 4, 5, 1, 1, 1, 9, 1, 1, 1, 5, 4, 2, 1, 1, 40}\right]$ |
| $\sqrt{425} = \left[20; \overline{1, 1, 1, 1, 1, 1, 40}\right]$ |
| $\sqrt{426} = \left[20; \overline{1, 1, 1, 3, 2, 6, 2, 3, 1, 1, 1, 40}\right]$ |
| $\sqrt{427} = \left[20; \overline{1, 1, 1, 40}\right]$ |
| $\sqrt{428} = \left[20; \overline{1, 2, 4, 1, 5, 10, 5, 1, 4, 2, 1, 40}\right]$ |
| $\sqrt{429} = \left[20; \overline{1, 2, 2, 9, 1, 12, 1, 9, 2, 2, 1, 40}\right]$ |
| $\sqrt{430} = \left[20; \overline{1, 2, 1, 3, 1, 6, 8, 6, 1, 3, 1, 2, 1, 40}\right]$ |
| $\sqrt{431} = \left[20; \overline{1, 3, 5, 1, 2, 7, 1, 19, 1, 7, 2, 1, 5, 3, 1, 40}\right]$ |
| $\sqrt{432} = \left[20; \overline{1, 3, 1, 1, 1, 3, 1, 40}\right]$ |
| $\sqrt{433} = \left[20; \overline{1, 4, 4, 2, 2, 1, 3, 13, 1, 1, 1, 1, 13, 3, 1, 2, 2, 4, 4, 1, 40}\right]$ |
| $\sqrt{434} = \left[20; \overline{1, 4, 1, 40}\right]$ |
| $\sqrt{435} = \left[20; \overline{1, 5, 1, 40}\right]$ |
| $\sqrt{436} = \left[20; \overline{1, 7, 2, 1, 1, 1, 13, 3, 2, 2, 5, 1, 1, 4, 10, 4, 1, 1, 5, 2, 2, 3, 13, 1, 1, 1, 2, 7, 1, 40}\right]$ |
| $\sqrt{437} = \left[20; \overline{1, 9, 2, 9, 1, 40}\right]$ |
| $\sqrt{438} = \left[20; \overline{1, 12, 1, 40}\right]$ |
| $\sqrt{439} = \left[20; \overline{1, 19, 1, 40}\right]$ |
| $\sqrt{440} = \left[20; \overline{1, 40}\right]$ |
| $\sqrt{442} = \left[21; \overline{42}\right]$ |
| $\sqrt{443} = \left[21; \overline{21, 42}\right]$ |
| $\sqrt{444} = \left[21; \overline{14, 42}\right]$ |
| $\sqrt{445} = \left[21; \overline{10, 1, 1, 10, 42}\right]$ |
| $\sqrt{446} = \left[21; \overline{8, 2, 2, 1, 3, 1, 1, 20, 1, 1, 3, 1, 2, 2, 8, 42}\right]$ |
| $\sqrt{447} = \left[21; \overline{7, 42}\right]$ |
| $\sqrt{448} = \left[21; \overline{6, 42}\right]$ |
| $\sqrt{449} = \left[21; \overline{5, 3, 1, 1, 1, 7, 1, 5, 5, 1, 7, 1, 1, 1, 3, 5, 42}\right]$ |
| $\sqrt{450} = \left[21; \overline{4, 1, 2, 4, 2, 1, 4, 42}\right]$ |
| $\sqrt{451} = \left[21; \overline{4, 4, 2, 8, 21, 8, 2, 4, 4, 42}\right]$ |
| $\sqrt{452} = \left[21; \overline{3, 1, 5, 3, 10, 3, 5, 1, 3, 42}\right]$ |
| $\sqrt{453} = \left[21; \overline{3, 1, 1, 10, 14, 10, 1, 1, 3, 42}\right]$ |
| $\sqrt{454} = \left[21; \overline{3, 3, 1, 13, 2, 3, 2, 1, 1, 4, 6, 1, 7, 1, 1, 1, 20, 1, 1, 1, 7, 1, 6, 4, 1, 1, 2, 3, 2, 13, 1, 3, 3, 42}\right]$ |
| $\sqrt{455} = \left[21; \overline{3, 42}\right]$ |
| $\sqrt{456} = \left[21; \overline{2, 1, 4, 1, 2, 42}\right]$ |
| $\sqrt{457} = \left[21; \overline{2, 1, 1, 1, 5, 2, 13, 1, 3, 1, 4, 1, 1, 4, 1, 3, 1, 13, 2, 5, 1, 1, 1, 2, 42}\right]$ |
| $\sqrt{458} = \left[21; \overline{2, 2, 42}\right]$ |
| $\sqrt{459} = \left[21; \overline{2, 2, 1, 4, 21, 4, 1, 2, 2, 42}\right]$ |
| $\sqrt{460} = \left[21; \overline{2, 4, 3, 1, 2, 10, 2, 1, 3, 4, 2, 42}\right]$ |
| $\sqrt{461} = \left[21; \overline{2, 8, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 8, 2, 42}\right]$ |
| $\sqrt{462} = \left[21; \overline{2, 42}\right]$ |
| $\sqrt{463} = \left[21; \overline{1, 1, 13, 1, 5, 4, 1, 1, 1, 1, 2, 2, 6, 1, 3, 21, 3, 1, 6, 2, 2, 1, 1, 1, 1, 4, 5, 1, 13, 1, 1, 42}\right]$ |
| $\sqrt{464} = \left[21; \overline{1, 1, 5, 1, 1, 1, 5, 1, 1, 42}\right]$ |
| $\sqrt{465} = \left[21; \overline{1, 1, 3, 2, 2, 2, 3, 1, 1, 42}\right]$ |
| $\sqrt{466} = \left[21; \overline{1, 1, 2, 2, 1, 2, 5, 1, 3, 1, 20, 1, 3, 1, 5, 2, 1, 2, 2, 1, 1, 42}\right]$ |
| $\sqrt{467} = \left[21; \overline{1, 1, 1, 1, 3, 3, 21, 3, 3, 1, 1, 1, 1, 42}\right]$ |
| $\sqrt{468} = \left[21; \overline{1, 1, 1, 2, 1, 1, 1, 42}\right]$ |
| $\sqrt{469} = \left[21; \overline{1, 1, 1, 10, 6, 10, 1, 1, 1, 42}\right]$ |
| $\sqrt{470} = \left[21; \overline{1, 2, 8, 2, 1, 42}\right]$ |
| $\sqrt{471} = \left[21; \overline{1, 2, 2, 1, 3, 4, 14, 4, 3, 1, 2, 2, 1, 42}\right]$ |
| $\sqrt{472} = \left[21; \overline{1, 2, 1, 1, 1, 4, 5, 4, 1, 1, 1, 2, 1, 42}\right]$ |
| $\sqrt{473} = \left[21; \overline{1, 2, 1, 42}\right]$ |
| $\sqrt{474} = \left[21; \overline{1, 3, 2, 1, 1, 1, 6, 1, 1, 1, 2, 3, 1, 42}\right]$ |
| $\sqrt{475} = \left[21; \overline{1, 3, 1, 6, 2, 6, 1, 3, 1, 42}\right]$ |
| $\sqrt{476} = \left[21; \overline{1, 4, 2, 10, 2, 4, 1, 42}\right]$ |
| $\sqrt{477} = \left[21; \overline{1, 5, 3, 1, 4, 10, 1, 2, 2, 4, 2, 2, 1, 10, 4, 1, 3, 5, 1, 42}\right]$ |
| $\sqrt{478} = \left[21; \overline{1, 6, 3, 4, 1, 1, 5, 1, 2, 3, 1, 1, 1, 1, 1, 13, 1, 20, 1, 13, 1, 1, 1, 1, 1, 3, 2, 1, 5, 1, 1, 4, 3, 6, 1, 42}\right]$ |
| $\sqrt{479} = \left[21; \overline{1, 7, 1, 3, 2, 21, 2, 3, 1, 7, 1, 42}\right]$ |
| $\sqrt{480} = \left[21; \overline{1, 9, 1, 42}\right]$ |
| $\sqrt{481} = \left[21; \overline{1, 13, 1, 1, 1, 4, 4, 1, 1, 1, 13, 1, 42}\right]$ |
| $\sqrt{482} = \left[21; \overline{1, 20, 1, 42}\right]$ |
| $\sqrt{483} = \left[21; \overline{1, 42}\right]$ |
| $\sqrt{485} = \left[22; \overline{44}\right]$ |
| $\sqrt{486} = \left[22; \overline{22, 44}\right]$ |
| $\sqrt{487} = \left[22; \overline{14, 1, 2, 4, 1, 1, 3, 2, 5, 1, 6, 1, 1, 21, 1, 1, 6, 1, 5, 2, 3, 1, 1, 4, 2, 1, 14, 44}\right]$ |
| $\sqrt{488} = \left[22; \overline{11, 44}\right]$ |
| $\sqrt{489} = \left[22; \overline{8, 1, 4, 1, 1, 1, 3, 2, 1, 2, 14, 2, 1, 2, 3, 1, 1, 1, 4, 1, 8, 44}\right]$ |
| $\sqrt{490} = \left[22; \overline{7, 2, 1, 4, 4, 4, 1, 2, 7, 44}\right]$ |
| $\sqrt{491} = \left[22; \overline{6, 3, 4, 8, 1, 1, 1, 2, 1, 1, 21, 1, 1, 2, 1, 1, 1, 8, 4, 3, 6, 44}\right]$ |
| $\sqrt{492} = \left[22; \overline{5, 1, 1, 10, 1, 1, 5, 44}\right]$ |
| $\sqrt{493} = \left[22; \overline{4, 1, 10, 3, 3, 10, 1, 4, 44}\right]$ |
| $\sqrt{494} = \left[22; \overline{4, 2, 2, 1, 2, 1, 2, 2, 4, 44}\right]$ |
| $\sqrt{495} = \left[22; \overline{4, 44}\right]$ |
| $\sqrt{496} = \left[22; \overline{3, 1, 2, 4, 1, 1, 2, 2, 2, 1, 1, 4, 2, 1, 3, 44}\right]$ |
| $\sqrt{497} = \left[22; \overline{3, 2, 2, 5, 6, 5, 2, 2, 3, 44}\right]$ |
| $\sqrt{498} = \left[22; \overline{3, 6, 22, 6, 3, 44}\right]$ |
| $\sqrt{499} = \left[22; \overline{2, 1, 21, 1, 2, 44}\right]$ |
| $\sqrt{500} = \left[22; \overline{2, 1, 3, 2, 1, 1, 10, 1, 1, 2, 3, 1, 2, 44}\right]$ |
| $\sqrt{501} = \left[22; \overline{2, 1, 1, 1, 1, 3, 8, 1, 2, 10, 1, 5, 2, 14, 2, 5, 1, 10, 2, 1, 8, 3, 1, 1, 1, 1, 2, 44}\right]$ |
| $\sqrt{502} = \left[22; \overline{2, 2, 7, 14, 1, 4, 22, 4, 1, 14, 7, 2, 2, 44}\right]$ |
| $\sqrt{503} = \left[22; \overline{2, 2, 1, 21, 1, 2, 2, 44}\right]$ |
| $\sqrt{504} = \left[22; \overline{2, 4, 2, 44}\right]$ |
| $\sqrt{505} = \left[22; \overline{2, 8, 2, 44}\right]$ |
| $\sqrt{506} = \left[22; \overline{2, 44}\right]$ |
| $\sqrt{507} = \left[22; \overline{1, 1, 14, 1, 1, 44}\right]$ |
| $\sqrt{508} = \left[22; \overline{1, 1, 5, 1, 14, 5, 1, 1, 3, 4, 1, 2, 1, 1, 1, 10, 1, 1, 1, 2, 1, 4, 3, 1, 1, 5, 14, 1, 5, 1, 1, 44}\right]$ |
| $\sqrt{509} = \left[22; \overline{1, 1, 3, 1, 1, 2, 10, 1, 8, 8, 1, 10, 2, 1, 1, 3, 1, 1, 44}\right]$ |
| $\sqrt{510} = \left[22; \overline{1, 1, 2, 1, 1, 44}\right]$ |
| $\sqrt{511} = \left[22; \overline{1, 1, 1, 1, 6, 1, 14, 4, 1, 21, 1, 4, 14, 1, 6, 1, 1, 1, 1, 44}\right]$ |
| $\sqrt{512} = \left[22; \overline{1, 1, 1, 2, 6, 11, 6, 2, 1, 1, 1, 44}\right]$ |
| $\sqrt{513} = \left[22; \overline{1, 1, 1, 5, 1, 4, 5, 2, 5, 4, 1, 5, 1, 1, 1, 44}\right]$ |
| $\sqrt{514} = \left[22; \overline{1, 2, 22, 2, 1, 44}\right]$ |
| $\sqrt{515} = \left[22; \overline{1, 2, 3, 1, 3, 1, 3, 2, 1, 44}\right]$ |
| $\sqrt{516} = \left[22; \overline{1, 2, 1, 1, 14, 1, 1, 2, 1, 44}\right]$ |
| $\sqrt{517} = \left[22; \overline{1, 2, 1, 4, 3, 3, 2, 10, 1, 14, 4, 14, 1, 10, 2, 3, 3, 4, 1, 2, 1, 44}\right]$ |
| $\sqrt{518} = \left[22; \overline{1, 3, 6, 3, 1, 44}\right]$ |
| $\sqrt{519} = \left[22; \overline{1, 3, 1, 1, 2, 1, 2, 3, 7, 3, 2, 1, 2, 1, 1, 3, 1, 44}\right]$ |
| $\sqrt{520} = \left[22; \overline{1, 4, 11, 4, 1, 44}\right]$ |
| $\sqrt{521} = \left[22; \overline{1, 4, 1, 2, 1, 2, 8, 1, 3, 3, 1, 8, 2, 1, 2, 1, 4, 1, 44}\right]$ |
| $\sqrt{522} = \left[22; \overline{1, 5, 1, 1, 4, 1, 1, 5, 1, 44}\right]$ |
| $\sqrt{523} = \left[22; \overline{1, 6, 1, 1, 1, 4, 2, 3, 14, 1, 21, 1, 14, 3, 2, 4, 1, 1, 1, 6, 1, 44}\right]$ |
| $\sqrt{524} = \left[22; \overline{1, 8, 5, 1, 1, 1, 1, 2, 1, 10, 1, 2, 1, 1, 1, 1, 5, 8, 1, 44}\right]$ |
| $\sqrt{525} = \left[22; \overline{1, 10, 2, 10, 1, 44}\right]$ |
| $\sqrt{526} = \left[22; \overline{1, 14, 3, 4, 1, 3, 2, 1, 3, 1, 8, 2, 1, 1, 2, 2, 6, 7, 2, 22, 2, 7, 6, 2, 2, 1, 1, 2, 8, 1, 3, 1, 2, 3, 1, 4, 3, 14, 1, 44}\right]$ |
| $\sqrt{527} = \left[22; \overline{1, 21, 1, 44}\right]$ |
| $\sqrt{528} = \left[22; \overline{1, 44}\right]$ |
| $\sqrt{530} = \left[23; \overline{46}\right]$ |
| $\sqrt{531} = \left[23; \overline{23, 46}\right]$ |
| $\sqrt{532} = \left[23; \overline{15, 2, 1, 4, 2, 4, 1, 2, 15, 46}\right]$ |
| $\sqrt{533} = \left[23; \overline{11, 1, 1, 11, 46}\right]$ |
| $\sqrt{534} = \left[23; \overline{9, 4, 1, 1, 22, 1, 1, 4, 9, 46}\right]$ |
| $\sqrt{535} = \left[23; \overline{7, 1, 2, 4, 1, 3, 1, 4, 2, 1, 7, 46}\right]$ |
| $\sqrt{536} = \left[23; \overline{6, 1, 1, 2, 5, 2, 1, 1, 6, 46}\right]$ |
| $\sqrt{537} = \left[23; \overline{5, 1, 3, 2, 1, 1, 1, 2, 1, 14, 1, 2, 1, 1, 1, 2, 3, 1, 5, 46}\right]$ |
| $\sqrt{538} = \left[23; \overline{5, 7, 1, 1, 7, 5, 46}\right]$ |
| $\sqrt{539} = \left[23; \overline{4, 1, 1, 1, 1, 1, 4, 46}\right]$ |
| $\sqrt{540} = \left[23; \overline{4, 4, 1, 10, 1, 4, 4, 46}\right]$ |
| $\sqrt{541} = \left[23; \overline{3, 1, 5, 1, 8, 2, 4, 1, 2, 3, 1, 1, 11, 15, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 15, 11, 1, 1, 3, 2, 1, 4, 2, 8, 1, 5, 1, 3, 46}\right]$ |
| $\sqrt{542} = \left[23; \overline{3, 1, 1, 3, 1, 1, 1, 22, 1, 1, 1, 3, 1, 1, 3, 46}\right]$ |
| $\sqrt{543} = \left[23; \overline{3, 3, 3, 1, 14, 1, 3, 3, 3, 46}\right]$ |
| $\sqrt{544} = \left[23; \overline{3, 11, 3, 46}\right]$ |
| $\sqrt{545} = \left[23; \overline{2, 1, 8, 1, 2, 46}\right]$ |
| $\sqrt{546} = \left[23; \overline{2, 1, 2, 1, 2, 46}\right]$ |
| $\sqrt{547} = \left[23; \overline{2, 1, 1, 2, 1, 2, 1, 7, 15, 2, 6, 5, 23, 5, 6, 2, 15, 7, 1, 2, 1, 2, 1, 1, 2, 46}\right]$ |
| $\sqrt{548} = \left[23; \overline{2, 2, 3, 1, 5, 1, 10, 1, 5, 1, 3, 2, 2, 46}\right]$ |
| $\sqrt{549} = \left[23; \overline{2, 3, 9, 11, 1, 1, 1, 1, 4, 1, 1, 1, 1, 11, 9, 3, 2, 46}\right]$ |
| $\sqrt{550} = \left[23; \overline{2, 4, 1, 2, 1, 1, 7, 4, 7, 1, 1, 2, 1, 4, 2, 46}\right]$ |
| $\sqrt{551} = \left[23; \overline{2, 8, 1, 8, 2, 46}\right]$ |
| $\sqrt{552} = \left[23; \overline{2, 46}\right]$ |
| $\sqrt{553} = \left[23; \overline{1, 1, 15, 5, 1, 4, 2, 1, 1, 3, 1, 2, 6, 2, 1, 3, 1, 1, 2, 4, 1, 5, 15, 1, 1, 46}\right]$ |
| $\sqrt{554} = \left[23; \overline{1, 1, 6, 4, 1, 1, 4, 6, 1, 1, 46}\right]$ |
| $\sqrt{555} = \left[23; \overline{1, 1, 3, 1, 3, 1, 1, 46}\right]$ |
| $\sqrt{556} = \left[23; \overline{1, 1, 2, 1, 1, 1, 3, 3, 2, 1, 5, 5, 15, 1, 1, 8, 1, 10, 1, 8, 1, 1, 15, 5, 5, 1, 2, 3, 3, 1, 1, 1, 2, 1, 1, 46}\right]$ |
| $\sqrt{557} = \left[23; \overline{1, 1, 1, 1, 46}\right]$ |
| $\sqrt{558} = \left[23; \overline{1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 46}\right]$ |
| $\sqrt{559} = \left[23; \overline{1, 1, 1, 4, 15, 1, 1, 4, 1, 2, 1, 4, 1, 1, 15, 4, 1, 1, 1, 46}\right]$ |
| $\sqrt{560} = \left[23; \overline{1, 1, 1, 46}\right]$ |
| $\sqrt{561} = \left[23; \overline{1, 2, 5, 1, 1, 2, 2, 2, 1, 1, 5, 2, 1, 46}\right]$ |
| $\sqrt{562} = \left[23; \overline{1, 2, 2, 2, 4, 1, 5, 1, 22, 1, 5, 1, 4, 2, 2, 2, 1, 46}\right]$ |
| $\sqrt{563} = \left[23; \overline{1, 2, 1, 2, 23, 2, 1, 2, 1, 46}\right]$ |
| $\sqrt{564} = \left[23; \overline{1, 2, 1, 46}\right]$ |
| $\sqrt{565} = \left[23; \overline{1, 3, 2, 1, 11, 5, 5, 11, 1, 2, 3, 1, 46}\right]$ |
| $\sqrt{566} = \left[23; \overline{1, 3, 1, 3, 1, 1, 8, 1, 22, 1, 8, 1, 1, 3, 1, 3, 1, 46}\right]$ |
| $\sqrt{567} = \left[23; \overline{1, 4, 3, 4, 1, 46}\right]$ |
| $\sqrt{568} = \left[23; \overline{1, 4, 1, 46}\right]$ |
| $\sqrt{569} = \left[23; \overline{1, 5, 1, 5, 9, 2, 1, 2, 3, 3, 2, 1, 2, 9, 5, 1, 5, 1, 46}\right]$ |
| $\sqrt{570} = \left[23; \overline{1, 6, 1, 46}\right]$ |
| $\sqrt{571} = \left[23; \overline{1, 8, 1, 1, 2, 1, 1, 1, 15, 3, 2, 1, 6, 7, 1, 4, 2, 3, 4, 2, 23, 2, 4, 3, 2, 4, 1, 7, 6, 1, 2, 3, 15, 1, 1, 1, 2, 1, 1, 8, 1, 46}\right]$ |
| $\sqrt{572} = \left[23; \overline{1, 10, 1, 46}\right]$ |
| $\sqrt{573} = \left[23; \overline{1, 14, 1, 46}\right]$ |
| $\sqrt{574} = \left[23; \overline{1, 22, 1, 46}\right]$ |
| $\sqrt{575} = \left[23; \overline{1, 46}\right]$ |
| $\sqrt{577} = \left[24; \overline{48}\right]$ |
| $\sqrt{578} = \left[24; \overline{24, 48}\right]$ |
| $\sqrt{579} = \left[24; \overline{16, 48}\right]$ |
| $\sqrt{580} = \left[24; \overline{12, 48}\right]$ |
| $\sqrt{581} = \left[24; \overline{9, 1, 1, 1, 1, 1, 3, 11, 1, 3, 2, 6, 2, 3, 1, 11, 3, 1, 1, 1, 1, 1, 9, 48}\right]$ |
| $\sqrt{582} = \left[24; \overline{8, 48}\right]$ |
| $\sqrt{583} = \left[24; \overline{6, 1, 7, 5, 4, 5, 7, 1, 6, 48}\right]$ |
| $\sqrt{584} = \left[24; \overline{6, 48}\right]$ |
| $\sqrt{585} = \left[24; \overline{5, 2, 1, 4, 1, 2, 5, 48}\right]$ |
| $\sqrt{586} = \left[24; \overline{4, 1, 4, 1, 1, 2, 1, 2, 7, 1, 2, 2, 1, 7, 2, 1, 2, 1, 1, 4, 1, 4, 48}\right]$ |
| $\sqrt{587} = \left[24; \overline{4, 2, 1, 1, 1, 1, 23, 1, 1, 1, 1, 2, 4, 48}\right]$ |
| $\sqrt{588} = \left[24; \overline{4, 48}\right]$ |
| $\sqrt{589} = \left[24; \overline{3, 1, 2, 2, 15, 1, 3, 9, 2, 4, 1, 11, 3, 6, 1, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 6, 3, 11, 1, 4, 2, 9, 3, 1, 15, 2, 2, 1, 3, 48}\right]$ |
| $\sqrt{590} = \left[24; \overline{3, 2, 4, 2, 3, 48}\right]$ |
| $\sqrt{591} = \left[24; \overline{3, 4, 1, 1, 7, 1, 1, 4, 3, 48}\right]$ |
| $\sqrt{592} = \left[24; \overline{3, 48}\right]$ |
| $\sqrt{593} = \left[24; \overline{2, 1, 5, 2, 2, 1, 1, 2, 2, 5, 1, 2, 48}\right]$ |
| $\sqrt{594} = \left[24; \overline{2, 1, 2, 5, 24, 5, 2, 1, 2, 48}\right]$ |
| $\sqrt{595} = \left[24; \overline{2, 1, 1, 4, 1, 4, 1, 1, 2, 48}\right]$ |
| $\sqrt{596} = \left[24; \overline{2, 2, 2, 1, 1, 1, 6, 2, 1, 9, 12, 9, 1, 2, 6, 1, 1, 1, 2, 2, 2, 48}\right]$ |
| $\sqrt{597} = \left[24; \overline{2, 3, 3, 1, 3, 1, 2, 11, 1, 6, 16, 6, 1, 11, 2, 1, 3, 1, 3, 3, 2, 48}\right]$ |
| $\sqrt{598} = \left[24; \overline{2, 4, 1, 15, 2, 15, 1, 4, 2, 48}\right]$ |
| $\sqrt{599} = \left[24; \overline{2, 9, 3, 2, 1, 1, 3, 1, 6, 4, 1, 2, 1, 23, 1, 2, 1, 4, 6, 1, 3, 1, 1, 2, 3, 9, 2, 48}\right]$ |
| $\sqrt{600} = \left[24; \overline{2, 48}\right]$ |
| $\sqrt{601} = \left[24; \overline{1, 1, 15, 1, 5, 5, 3, 1, 1, 2, 1, 2, 2, 1, 9, 9, 1, 2, 2, 1, 2, 1, 1, 3, 5, 5, 1, 15, 1, 1, 48}\right]$ |
| $\sqrt{602} = \left[24; \overline{1, 1, 6, 1, 1, 48}\right]$ |
| $\sqrt{603} = \left[24; \overline{1, 1, 3, 1, 23, 1, 3, 1, 1, 48}\right]$ |
| $\sqrt{604} = \left[24; \overline{1, 1, 2, 1, 3, 2, 1, 1, 1, 1, 1, 4, 1, 5, 3, 9, 1, 1, 15, 1, 6, 12, 6, 1, 15, 1, 1, 9, 3, 5, 1, 4, 1, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1, 48}\right]$ |
| $\sqrt{605} = \left[24; \overline{1, 1, 2, 11, 1, 8, 1, 11, 2, 1, 1, 48}\right]$ |
| $\sqrt{606} = \left[24; \overline{1, 1, 1, 1, 1, 1, 2, 1, 9, 8, 9, 1, 2, 1, 1, 1, 1, 1, 1, 48}\right]$ |
| $\sqrt{607} = \left[24; \overline{1, 1, 1, 3, 7, 1, 15, 1, 1, 4, 1, 23, 1, 4, 1, 1, 15, 1, 7, 3, 1, 1, 1, 48}\right]$ |
| $\sqrt{608} = \left[24; \overline{1, 1, 1, 11, 1, 1, 1, 48}\right]$ |
| $\sqrt{609} = \left[24; \overline{1, 2, 9, 1, 1, 6, 1, 1, 9, 2, 1, 48}\right]$ |
| $\sqrt{610} = \left[24; \overline{1, 2, 3, 5, 5, 3, 2, 1, 48}\right]$ |
| $\sqrt{611} = \left[24; \overline{1, 2, 1, 1, 4, 2, 1, 2, 4, 1, 1, 2, 1, 48}\right]$ |
| $\sqrt{612} = \left[24; \overline{1, 2, 1, 4, 1, 2, 1, 48}\right]$ |
| $\sqrt{613} = \left[24; \overline{1, 3, 6, 1, 4, 1, 1, 1, 3, 2, 11, 1, 15, 1, 1, 2, 2, 1, 1, 15, 1, 11, 2, 3, 1, 1, 1, 4, 1, 6, 3, 1, 48}\right]$ |
| $\sqrt{614} = \left[24; \overline{1, 3, 1, 1, 9, 2, 1, 4, 3, 1, 1, 2, 24, 2, 1, 1, 3, 4, 1, 2, 9, 1, 1, 3, 1, 48}\right]$ |
| $\sqrt{615} = \left[24; \overline{1, 3, 1, 48}\right]$ |
| $\sqrt{616} = \left[24; \overline{1, 4, 1, 1, 6, 1, 1, 4, 1, 48}\right]$ |
| $\sqrt{617} = \left[24; \overline{1, 5, 4, 2, 1, 6, 2, 2, 6, 1, 2, 4, 5, 1, 48}\right]$ |
| $\sqrt{618} = \left[24; \overline{1, 6, 8, 6, 1, 48}\right]$ |
| $\sqrt{619} = \left[24; \overline{1, 7, 3, 5, 4, 1, 3, 1, 2, 1, 1, 9, 2, 1, 1, 1, 15, 1, 23, 1, 15, 1, 1, 1, 2, 9, 1, 1, 2, 1, 3, 1, 4, 5, 3, 7, 1, 48}\right]$ |
| $\sqrt{620} = \left[24; \overline{1, 8, 1, 48}\right]$ |
| $\sqrt{621} = \left[24; \overline{1, 11, 2, 11, 1, 48}\right]$ |
| $\sqrt{622} = \left[24; \overline{1, 15, 1, 1, 1, 4, 1, 7, 2, 24, 2, 7, 1, 4, 1, 1, 1, 15, 1, 48}\right]$ |
| $\sqrt{623} = \left[24; \overline{1, 23, 1, 48}\right]$ |
| $\sqrt{624} = \left[24; \overline{1, 48}\right]$ |
| $\sqrt{626} = \left[25; \overline{50}\right]$ |
| $\sqrt{627} = \left[25; \overline{25, 50}\right]$ |
| $\sqrt{628} = \left[25; \overline{16, 1, 2, 5, 4, 2, 1, 2, 2, 3, 1, 3, 12, 3, 1, 3, 2, 2, 1, 2, 4, 5, 2, 1, 16, 50}\right]$ |
| $\sqrt{629} = \left[25; \overline{12, 1, 1, 12, 50}\right]$ |
| $\sqrt{630} = \left[25; \overline{10, 50}\right]$ |
| $\sqrt{631} = \left[25; \overline{8, 2, 1, 4, 1, 9, 4, 2, 6, 1, 2, 1, 2, 1, 1, 1, 1, 4, 2, 2, 2, 1, 16, 25, 16, 1, 2, 2, 2, 4, 1, 1, 1, 1, 2, 1, 2, 1, 6, 2, 4, 9, 1, 4, 1, 2, 8, 50}\right]$ |
| $\sqrt{632} = \left[25; \overline{7, 6, 7, 50}\right]$ |
| $\sqrt{633} = \left[25; \overline{6, 3, 1, 2, 2, 1, 1, 2, 16, 2, 1, 1, 2, 2, 1, 3, 6, 50}\right]$ |
| $\sqrt{634} = \left[25; \overline{5, 1, 1, 2, 1, 4, 3, 6, 1, 7, 1, 1, 7, 1, 6, 3, 4, 1, 2, 1, 1, 5, 50}\right]$ |
| $\sqrt{635} = \left[25; \overline{5, 50}\right]$ |
| $\sqrt{636} = \left[25; \overline{4, 1, 1, 3, 3, 12, 3, 3, 1, 1, 4, 50}\right]$ |
| $\sqrt{637} = \left[25; \overline{4, 5, 2, 1, 3, 1, 1, 12, 16, 1, 2, 1, 16, 12, 1, 1, 3, 1, 2, 5, 4, 50}\right]$ |
| $\sqrt{638} = \left[25; \overline{3, 1, 6, 2, 6, 1, 3, 50}\right]$ |
| $\sqrt{639} = \left[25; \overline{3, 1, 1, 2, 4, 4, 1, 4, 1, 4, 4, 2, 1, 1, 3, 50}\right]$ |
| $\sqrt{640} = \left[25; \overline{3, 2, 1, 4, 1, 11, 1, 4, 1, 2, 3, 50}\right]$ |
| $\sqrt{641} = \left[25; \overline{3, 6, 1, 9, 3, 1, 3, 1, 5, 1, 1, 5, 1, 3, 1, 3, 9, 1, 6, 3, 50}\right]$ |
| $\sqrt{642} = \left[25; \overline{2, 1, 24, 1, 2, 50}\right]$ |
| $\sqrt{643} = \left[25; \overline{2, 1, 3, 1, 16, 8, 2, 1, 1, 5, 25, 5, 1, 1, 2, 8, 16, 1, 3, 1, 2, 50}\right]$ |
| $\sqrt{644} = \left[25; \overline{2, 1, 1, 1, 6, 1, 1, 1, 2, 50}\right]$ |
| $\sqrt{645} = \left[25; \overline{2, 1, 1, 12, 10, 12, 1, 1, 2, 50}\right]$ |
| $\sqrt{646} = \left[25; \overline{2, 2, 2, 50}\right]$ |
| $\sqrt{647} = \left[25; \overline{2, 3, 2, 2, 1, 1, 4, 25, 4, 1, 1, 2, 2, 3, 2, 50}\right]$ |
| $\sqrt{648} = \left[25; \overline{2, 5, 6, 5, 2, 50}\right]$ |
| $\sqrt{649} = \left[25; \overline{2, 9, 1, 2, 3, 1, 1, 2, 1, 4, 1, 16, 6, 3, 4, 3, 6, 16, 1, 4, 1, 2, 1, 1, 3, 2, 1, 9, 2, 50}\right]$ |
| $\sqrt{650} = \left[25; \overline{2, 50}\right]$ |
| $\sqrt{651} = \left[25; \overline{1, 1, 16, 1, 1, 50}\right]$ |
| $\sqrt{652} = \left[25; \overline{1, 1, 6, 1, 3, 1, 3, 2, 5, 1, 16, 5, 1, 1, 1, 1, 2, 12, 2, 1, 1, 1, 1, 5, 16, 1, 5, 2, 3, 1, 3, 1, 6, 1, 1, 50}\right]$ |
| $\sqrt{653} = \left[25; \overline{1, 1, 4, 7, 12, 1, 1, 1, 3, 3, 1, 1, 1, 12, 7, 4, 1, 1, 50}\right]$ |
| $\sqrt{654} = \left[25; \overline{1, 1, 2, 1, 9, 1, 1, 16, 1, 1, 9, 1, 2, 1, 1, 50}\right]$ |
| $\sqrt{655} = \left[25; \overline{1, 1, 2, 5, 3, 2, 8, 10, 8, 2, 3, 5, 2, 1, 1, 50}\right]$ |
| $\sqrt{656} = \left[25; \overline{1, 1, 1, 1, 2, 1, 1, 1, 1, 50}\right]$ |
| $\sqrt{657} = \left[25; \overline{1, 1, 1, 2, 1, 1, 5, 1, 4, 1, 5, 1, 1, 2, 1, 1, 1, 50}\right]$ |
| $\sqrt{658} = \left[25; \overline{1, 1, 1, 6, 1, 1, 1, 50}\right]$ |
| $\sqrt{659} = \left[25; \overline{1, 2, 25, 2, 1, 50}\right]$ |
| $\sqrt{660} = \left[25; \overline{1, 2, 4, 2, 1, 50}\right]$ |
| $\sqrt{661} = \left[25; \overline{1, 2, 2, 4, 4, 16, 1, 9, 2, 1, 12, 5, 1, 1, 1, 2, 1, 3, 1, 1, 3, 1, 2, 1, 1, 1, 5, 12, 1, 2, 9, 1, 16, 4, 4, 2, 2, 1, 50}\right]$ |
| $\sqrt{662} = \left[25; \overline{1, 2, 1, 2, 3, 1, 1, 2, 6, 1, 24, 1, 6, 2, 1, 1, 3, 2, 1, 2, 1, 50}\right]$ |
| $\sqrt{663} = \left[25; \overline{1, 2, 1, 50}\right]$ |
| $\sqrt{664} = \left[25; \overline{1, 3, 3, 5, 2, 2, 1, 1, 2, 1, 5, 1, 2, 1, 1, 2, 2, 5, 3, 3, 1, 50}\right]$ |
| $\sqrt{665} = \left[25; \overline{1, 3, 1, 2, 2, 2, 1, 3, 1, 50}\right]$ |
| $\sqrt{666} = \left[25; \overline{1, 4, 5, 1, 1, 6, 1, 4, 1, 6, 1, 1, 5, 4, 1, 50}\right]$ |
| $\sqrt{667} = \left[25; \overline{1, 4, 1, 3, 7, 8, 2, 8, 7, 3, 1, 4, 1, 50}\right]$ |
| $\sqrt{668} = \left[25; \overline{1, 5, 2, 12, 2, 5, 1, 50}\right]$ |
| $\sqrt{669} = \left[25; \overline{1, 6, 2, 2, 3, 1, 9, 1, 1, 2, 1, 12, 4, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 4, 12, 1, 2, 1, 1, 9, 1, 3, 2, 2, 6, 1, 50}\right]$ |
| $\sqrt{670} = \left[25; \overline{1, 7, 1, 1, 1, 5, 10, 5, 1, 1, 1, 7, 1, 50}\right]$ |
| $\sqrt{671} = \left[25; \overline{1, 9, 2, 1, 1, 1, 2, 9, 1, 50}\right]$ |
| $\sqrt{672} = \left[25; \overline{1, 11, 1, 50}\right]$ |
| $\sqrt{673} = \left[25; \overline{1, 16, 3, 5, 2, 3, 1, 1, 6, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 6, 1, 1, 3, 2, 5, 3, 16, 1, 50}\right]$ |
| $\sqrt{674} = \left[25; \overline{1, 24, 1, 50}\right]$ |
| $\sqrt{675} = \left[25; \overline{1, 50}\right]$ |
| $\sqrt{677} = \left[26; \overline{52}\right]$ |
| $\sqrt{678} = \left[26; \overline{26, 52}\right]$ |
| $\sqrt{679} = \left[26; \overline{17, 2, 1, 5, 8, 1, 1, 25, 1, 1, 8, 5, 1, 2, 17, 52}\right]$ |
| $\sqrt{680} = \left[26; \overline{13, 52}\right]$ |
| $\sqrt{681} = \left[26; \overline{10, 2, 2, 1, 1, 2, 6, 7, 3, 2, 1, 16, 1, 2, 3, 7, 6, 2, 1, 1, 2, 2, 10, 52}\right]$ |
| $\sqrt{682} = \left[26; \overline{8, 1, 2, 5, 2, 5, 2, 1, 8, 52}\right]$ |
| $\sqrt{683} = \left[26; \overline{7, 2, 4, 3, 1, 1, 25, 1, 1, 3, 4, 2, 7, 52}\right]$ |
| $\sqrt{684} = \left[26; \overline{6, 1, 1, 12, 1, 1, 6, 52}\right]$ |
| $\sqrt{685} = \left[26; \overline{5, 1, 3, 1, 12, 3, 2, 2, 3, 12, 1, 3, 1, 5, 52}\right]$ |
| $\sqrt{686} = \left[26; \overline{5, 4, 1, 1, 3, 2, 10, 26, 10, 2, 3, 1, 1, 4, 5, 52}\right]$ |
| $\sqrt{687} = \left[26; \overline{4, 1, 2, 1, 16, 1, 2, 1, 4, 52}\right]$ |
| $\sqrt{688} = \left[26; \overline{4, 2, 1, 5, 7, 3, 7, 5, 1, 2, 4, 52}\right]$ |
| $\sqrt{689} = \left[26; \overline{4, 52}\right]$ |
| $\sqrt{690} = \left[26; \overline{3, 1, 2, 1, 3, 52}\right]$ |
| $\sqrt{691} = \left[26; \overline{3, 2, 17, 10, 2, 5, 2, 1, 2, 1, 4, 1, 1, 8, 4, 1, 1, 1, 25, 1, 1, 1, 4, 8, 1, 1, 4, 1, 2, 1, 2, 5, 2, 10, 17, 2, 3, 52}\right]$ |
| $\sqrt{692} = \left[26; \overline{3, 3, 1, 2, 1, 1, 12, 1, 1, 2, 1, 3, 3, 52}\right]$ |
| $\sqrt{693} = \left[26; \overline{3, 12, 1, 4, 1, 12, 3, 52}\right]$ |
| $\sqrt{694} = \left[26; \overline{2, 1, 9, 1, 6, 1, 1, 1, 1, 1, 2, 1, 8, 17, 2, 4, 3, 3, 2, 4, 1, 5, 26, 5, 1, 4, 2, 3, 3, 4, 2, 17, 8, 1, 2, 1, 1, 1, 1, 1, 6, 1, 9, 1, 2, 52}\right]$ |
| $\sqrt{695} = \left[26; \overline{2, 1, 3, 10, 3, 1, 2, 52}\right]$ |
| $\sqrt{696} = \left[26; \overline{2, 1, 1, 1, 1, 1, 2, 52}\right]$ |
| $\sqrt{697} = \left[26; \overline{2, 2, 52}\right]$ |
| $\sqrt{698} = \left[26; \overline{2, 2, 1, 1, 1, 1, 2, 2, 52}\right]$ |
| $\sqrt{699} = \left[26; \overline{2, 3, 1, 1, 2, 1, 25, 1, 2, 1, 1, 3, 2, 52}\right]$ |
| $\sqrt{700} = \left[26; \overline{2, 5, 2, 1, 1, 1, 1, 12, 1, 1, 1, 1, 2, 5, 2, 52}\right]$ |
| $\sqrt{701} = \left[26; \overline{2, 10, 10, 2, 52}\right]$ |
| $\sqrt{702} = \left[26; \overline{2, 52}\right]$ |
| $\sqrt{703} = \left[26; \overline{1, 1, 17, 5, 1, 5, 17, 1, 1, 52}\right]$ |
| $\sqrt{704} = \left[26; \overline{1, 1, 7, 13, 7, 1, 1, 52}\right]$ |
| $\sqrt{705} = \left[26; \overline{1, 1, 4, 3, 10, 3, 4, 1, 1, 52}\right]$ |
| $\sqrt{706} = \left[26; \overline{1, 1, 3, 26, 3, 1, 1, 52}\right]$ |
| $\sqrt{707} = \left[26; \overline{1, 1, 2, 3, 2, 1, 1, 52}\right]$ |
| $\sqrt{708} = \left[26; \overline{1, 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 52}\right]$ |
| $\sqrt{709} = \left[26; \overline{1, 1, 1, 2, 7, 4, 3, 3, 4, 7, 2, 1, 1, 1, 52}\right]$ |
| $\sqrt{710} = \left[26; \overline{1, 1, 1, 4, 1, 1, 1, 52}\right]$ |
| $\sqrt{711} = \left[26; \overline{1, 1, 1, 52}\right]$ |
| $\sqrt{712} = \left[26; \overline{1, 2, 6, 2, 1, 52}\right]$ |
| $\sqrt{713} = \left[26; \overline{1, 2, 2, 1, 4, 6, 2, 6, 4, 1, 2, 2, 1, 52}\right]$ |
| $\sqrt{714} = \left[26; \overline{1, 2, 1, 1, 2, 1, 1, 2, 1, 52}\right]$ |
| $\sqrt{715} = \left[26; \overline{1, 2, 1, 5, 5, 5, 1, 2, 1, 52}\right]$ |
| $\sqrt{716} = \left[26; \overline{1, 3, 7, 2, 1, 1, 6, 10, 1, 1, 4, 2, 1, 12, 1, 2, 4, 1, 1, 10, 6, 1, 1, 2, 7, 3, 1, 52}\right]$ |
| $\sqrt{717} = \left[26; \overline{1, 3, 2, 12, 1, 16, 1, 12, 2, 3, 1, 52}\right]$ |
| $\sqrt{718} = \left[26; \overline{1, 3, 1, 8, 7, 1, 1, 5, 2, 2, 1, 2, 3, 1, 3, 17, 1, 1, 2, 26, 2, 1, 1, 17, 3, 1, 3, 2, 1, 2, 2, 5, 1, 1, 7, 8, 1, 3, 1, 52}\right]$ |
| $\sqrt{719} = \left[26; \overline{1, 4, 2, 1, 1, 1, 1, 1, 4, 3, 1, 9, 1, 25, 1, 9, 1, 3, 4, 1, 1, 1, 1, 1, 2, 4, 1, 52}\right]$ |
| $\sqrt{720} = \left[26; \overline{1, 4, 1, 52}\right]$ |
| $\sqrt{721} = \left[26; \overline{1, 5, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 17, 3, 1, 1, 10, 5, 1, 6, 1, 5, 10, 1, 1, 3, 17, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 5, 1, 52}\right]$ |
| $\sqrt{722} = \left[26; \overline{1, 6, 1, 2, 3, 2, 26, 2, 3, 2, 1, 6, 1, 52}\right]$ |
| $\sqrt{723} = \left[26; \overline{1, 7, 1, 52}\right]$ |
| $\sqrt{724} = \left[26; \overline{1, 9, 1, 3, 1, 1, 2, 1, 4, 5, 1, 3, 3, 3, 17, 1, 1, 1, 2, 1, 12, 1, 2, 1, 1, 1, 17, 3, 3, 3, 1, 5, 4, 1, 2, 1, 1, 3, 1, 9, 1, 52}\right]$ |
| $\sqrt{725} = \left[26; \overline{1, 12, 2, 12, 1, 52}\right]$ |
| $\sqrt{726} = \left[26; \overline{1, 16, 1, 52}\right]$ |
| $\sqrt{727} = \left[26; \overline{1, 25, 1, 52}\right]$ |
| $\sqrt{728} = \left[26; \overline{1, 52}\right]$ |
| $\sqrt{730} = \left[27; \overline{54}\right]$ |
| $\sqrt{731} = \left[27; \overline{27, 54}\right]$ |
| $\sqrt{732} = \left[27; \overline{18, 54}\right]$ |
| $\sqrt{733} = \left[27; \overline{13, 1, 1, 13, 54}\right]$ |
| $\sqrt{734} = \left[27; \overline{10, 1, 4, 1, 1, 26, 1, 1, 4, 1, 10, 54}\right]$ |
| $\sqrt{735} = \left[27; \overline{9, 54}\right]$ |
| $\sqrt{736} = \left[27; \overline{7, 1, 2, 1, 2, 1, 7, 54}\right]$ |
| $\sqrt{737} = \left[27; \overline{6, 1, 3, 3, 7, 2, 4, 2, 7, 3, 3, 1, 6, 54}\right]$ |
| $\sqrt{738} = \left[27; \overline{6, 54}\right]$ |
| $\sqrt{739} = \left[27; \overline{5, 2, 2, 1, 1, 3, 3, 2, 1, 8, 2, 1, 2, 1, 17, 2, 1, 1, 7, 5, 1, 10, 27, 10, 1, 5, 7, 1, 1, 2, 17, 1, 2, 1, 2, 8, 1, 2, 3, 3, 1, 1, 2, 2, 5, 54}\right]$ |
| $\sqrt{740} = \left[27; \overline{4, 1, 12, 1, 4, 54}\right]$ |
| $\sqrt{741} = \left[27; \overline{4, 1, 1, 13, 18, 13, 1, 1, 4, 54}\right]$ |
| $\sqrt{742} = \left[27; \overline{4, 5, 1, 4, 8, 1, 6, 1, 8, 4, 1, 5, 4, 54}\right]$ |
| $\sqrt{743} = \left[27; \overline{3, 1, 7, 27, 7, 1, 3, 54}\right]$ |
| $\sqrt{744} = \left[27; \overline{3, 1, 1, 1, 1, 1, 1, 1, 3, 54}\right]$ |
| $\sqrt{745} = \left[27; \overline{3, 2, 1, 1, 5, 2, 10, 2, 5, 1, 1, 2, 3, 54}\right]$ |
| $\sqrt{746} = \left[27; \overline{3, 5, 7, 1, 1, 1, 1, 1, 1, 7, 5, 3, 54}\right]$ |
| $\sqrt{747} = \left[27; \overline{3, 54}\right]$ |
| $\sqrt{748} = \left[27; \overline{2, 1, 6, 5, 1, 12, 1, 5, 6, 1, 2, 54}\right]$ |
| $\sqrt{749} = \left[27; \overline{2, 1, 2, 1, 1, 4, 2, 1, 1, 13, 10, 1, 6, 1, 10, 13, 1, 1, 2, 4, 1, 1, 2, 1, 2, 54}\right]$ |
| $\sqrt{750} = \left[27; \overline{2, 1, 1, 2, 3, 1, 1, 8, 1, 1, 3, 2, 1, 1, 2, 54}\right]$ |
| $\sqrt{751} = \left[27; \overline{2, 2, 8, 1, 2, 1, 3, 5, 1, 4, 1, 1, 1, 3, 1, 1, 3, 10, 1, 2, 7, 2, 17, 1, 4, 27, 4, 1, 17, 2, 7, 2, 1, 10, 3, 1, 1, 3, 1, 1, 1, 4, 1, 5, 3, 1, 2, 1, 8, 2, 2, 54}\right]$ |
| $\sqrt{752} = \left[27; \overline{2, 2, 1, 2, 1, 2, 2, 54}\right]$ |
| $\sqrt{753} = \left[27; \overline{2, 3, 1, 2, 1, 1, 1, 7, 4, 1, 6, 18, 6, 1, 4, 7, 1, 1, 1, 2, 1, 3, 2, 54}\right]$ |
| $\sqrt{754} = \left[27; \overline{2, 5, 1, 1, 1, 1, 5, 2, 54}\right]$ |
| $\sqrt{755} = \left[27; \overline{2, 10, 2, 54}\right]$ |
| $\sqrt{756} = \left[27; \overline{2, 54}\right]$ |
| $\sqrt{757} = \left[27; \overline{1, 1, 17, 1, 5, 5, 1, 17, 1, 1, 54}\right]$ |
| $\sqrt{758} = \left[27; \overline{1, 1, 7, 2, 1, 3, 3, 1, 26, 1, 3, 3, 1, 2, 7, 1, 1, 54}\right]$ |
| $\sqrt{759} = \left[27; \overline{1, 1, 4, 1, 1, 54}\right]$ |
| $\sqrt{760} = \left[27; \overline{1, 1, 3, 5, 1, 5, 3, 1, 1, 54}\right]$ |
| $\sqrt{761} = \left[27; \overline{1, 1, 2, 2, 1, 1, 54}\right]$ |
| $\sqrt{762} = \left[27; \overline{1, 1, 1, 1, 8, 1, 1, 1, 1, 54}\right]$ |
| $\sqrt{763} = \left[27; \overline{1, 1, 1, 1, 1, 5, 1, 1, 17, 1, 6, 1, 17, 1, 1, 5, 1, 1, 1, 1, 1, 54}\right]$ |
| $\sqrt{764} = \left[27; \overline{1, 1, 1, 3, 1, 1, 2, 2, 1, 6, 4, 1, 7, 10, 1, 12, 1, 10, 7, 1, 4, 6, 1, 2, 2, 1, 1, 3, 1, 1, 1, 54}\right]$ |
| $\sqrt{765} = \left[27; \overline{1, 1, 1, 13, 6, 13, 1, 1, 1, 54}\right]$ |
| $\sqrt{766} = \left[27; \overline{1, 2, 10, 1, 2, 1, 3, 1, 1, 17, 1, 8, 3, 1, 1, 2, 1, 2, 5, 5, 1, 26, 1, 5, 5, 2, 1, 2, 1, 1, 3, 8, 1, 17, 1, 1, 3, 1, 2, 1, 10, 2, 1, 54}\right]$ |
| $\sqrt{767} = \left[27; \overline{1, 2, 3, 1, 1, 1, 1, 1, 3, 2, 1, 54}\right]$ |
| $\sqrt{768} = \left[27; \overline{1, 2, 2, 13, 2, 2, 1, 54}\right]$ |
| $\sqrt{769} = \left[27; \overline{1, 2, 1, 2, 1, 1, 17, 1, 10, 6, 1, 5, 3, 3, 2, 1, 1, 1, 1, 1, 1, 2, 3, 3, 5, 1, 6, 10, 1, 17, 1, 1, 2, 1, 2, 1, 54}\right]$ |
| $\sqrt{770} = \left[27; \overline{1, 2, 1, 54}\right]$ |
| $\sqrt{771} = \left[27; \overline{1, 3, 3, 2, 4, 1, 1, 1, 1, 2, 27, 2, 1, 1, 1, 1, 4, 2, 3, 3, 1, 54}\right]$ |
| $\sqrt{772} = \left[27; \overline{1, 3, 1, 1, 1, 5, 1, 1, 7, 2, 1, 1, 17, 1, 12, 1, 17, 1, 1, 2, 7, 1, 1, 5, 1, 1, 1, 3, 1, 54}\right]$ |
| $\sqrt{773} = \left[27; \overline{1, 4, 13, 1, 2, 2, 1, 13, 4, 1, 54}\right]$ |
| $\sqrt{774} = \left[27; \overline{1, 4, 1, 1, 2, 1, 1, 4, 1, 54}\right]$ |
| $\sqrt{775} = \left[27; \overline{1, 5, 4, 1, 8, 2, 8, 1, 4, 5, 1, 54}\right]$ |
| $\sqrt{776} = \left[27; \overline{1, 5, 1, 54}\right]$ |
| $\sqrt{777} = \left[27; \overline{1, 6, 1, 54}\right]$ |
| $\sqrt{778} = \left[27; \overline{1, 8, 3, 5, 1, 7, 7, 1, 5, 3, 8, 1, 54}\right]$ |
| $\sqrt{779} = \left[27; \overline{1, 10, 5, 2, 27, 2, 5, 10, 1, 54}\right]$ |
| $\sqrt{780} = \left[27; \overline{1, 12, 1, 54}\right]$ |
| $\sqrt{781} = \left[27; \overline{1, 17, 1, 1, 1, 5, 1, 1, 4, 1, 1, 5, 1, 1, 1, 17, 1, 54}\right]$ |
| $\sqrt{782} = \left[27; \overline{1, 26, 1, 54}\right]$ |
| $\sqrt{783} = \left[27; \overline{1, 54}\right]$ |
| $\sqrt{785} = \left[28; \overline{56}\right]$ |
| $\sqrt{786} = \left[28; \overline{28, 56}\right]$ |
| $\sqrt{787} = \left[28; \overline{18, 1, 2, 5, 1, 8, 1, 1, 27, 1, 1, 8, 1, 5, 2, 1, 18, 56}\right]$ |
| $\sqrt{788} = \left[28; \overline{14, 56}\right]$ |
| $\sqrt{789} = \left[28; \overline{11, 4, 1, 1, 2, 3, 1, 13, 3, 1, 2, 18, 2, 1, 3, 13, 1, 3, 2, 1, 1, 4, 11, 56}\right]$ |
| $\sqrt{790} = \left[28; \overline{9, 2, 1, 5, 1, 1, 3, 4, 1, 4, 1, 4, 3, 1, 1, 5, 1, 2, 9, 56}\right]$ |
| $\sqrt{791} = \left[28; \overline{8, 56}\right]$ |
| $\sqrt{792} = \left[28; \overline{7, 56}\right]$ |
| $\sqrt{793} = \left[28; \overline{6, 4, 6, 56}\right]$ |
| $\sqrt{794} = \left[28; \overline{5, 1, 1, 1, 1, 1, 1, 1, 1, 5, 56}\right]$ |
| $\sqrt{795} = \left[28; \overline{5, 9, 5, 56}\right]$ |
| $\sqrt{796} = \left[28; \overline{4, 1, 2, 5, 1, 10, 2, 3, 1, 6, 3, 1, 1, 1, 1, 2, 4, 1, 2, 1, 18, 14, 18, 1, 2, 1, 4, 2, 1, 1, 1, 1, 3, 6, 1, 3, 2, 10, 1, 5, 2, 1, 4, 56}\right]$ |
| $\sqrt{797} = \left[28; \overline{4, 3, 13, 1, 4, 4, 1, 13, 3, 4, 56}\right]$ |
| $\sqrt{798} = \left[28; \overline{4, 56}\right]$ |
| $\sqrt{799} = \left[28; \overline{3, 1, 3, 56}\right]$ |
| $\sqrt{800} = \left[28; \overline{3, 1, 1, 13, 1, 1, 3, 56}\right]$ |
| $\sqrt{801} = \left[28; \overline{3, 3, 4, 1, 5, 2, 10, 1, 6, 6, 6, 1, 10, 2, 5, 1, 4, 3, 3, 56}\right]$ |
| $\sqrt{802} = \left[28; \overline{3, 7, 1, 3, 6, 28, 6, 3, 1, 7, 3, 56}\right]$ |
| $\sqrt{803} = \left[28; \overline{2, 1, 27, 1, 2, 56}\right]$ |
| $\sqrt{804} = \left[28; \overline{2, 1, 4, 2, 18, 2, 4, 1, 2, 56}\right]$ |
| $\sqrt{805} = \left[28; \overline{2, 1, 2, 5, 1, 13, 2, 1, 10, 1, 2, 13, 1, 5, 2, 1, 2, 56}\right]$ |
| $\sqrt{806} = \left[28; \overline{2, 1, 1, 3, 2, 5, 4, 5, 2, 3, 1, 1, 2, 56}\right]$ |
| $\sqrt{807} = \left[28; \overline{2, 2, 4, 1, 3, 4, 9, 4, 3, 1, 4, 2, 2, 56}\right]$ |
| $\sqrt{808} = \left[28; \overline{2, 2, 1, 5, 1, 1, 1, 1, 13, 1, 1, 1, 1, 5, 1, 2, 2, 56}\right]$ |
| $\sqrt{809} = \left[28; \overline{2, 3, 1, 7, 2, 1, 6, 2, 3, 11, 11, 3, 2, 6, 1, 2, 7, 1, 3, 2, 56}\right]$ |
| $\sqrt{810} = \left[28; \overline{2, 5, 1, 4, 1, 5, 2, 56}\right]$ |
| $\sqrt{811} = \left[28; \overline{2, 10, 1, 8, 1, 1, 2, 1, 1, 1, 3, 6, 18, 1, 4, 1, 2, 1, 27, 1, 2, 1, 4, 1, 18, 6, 3, 1, 1, 1, 2, 1, 1, 8, 1, 10, 2, 56}\right]$ |
| $\sqrt{812} = \left[28; \overline{2, 56}\right]$ |
| $\sqrt{813} = \left[28; \overline{1, 1, 18, 1, 1, 56}\right]$ |
| $\sqrt{814} = \left[28; \overline{1, 1, 7, 1, 1, 1, 5, 18, 1, 5, 2, 1, 1, 4, 1, 1, 2, 5, 1, 18, 5, 1, 1, 1, 7, 1, 1, 56}\right]$ |
| $\sqrt{815} = \left[28; \overline{1, 1, 4, 1, 2, 5, 2, 1, 4, 1, 1, 56}\right]$ |
| $\sqrt{816} = \left[28; \overline{1, 1, 3, 3, 3, 1, 1, 56}\right]$ |
| $\sqrt{817} = \left[28; \overline{1, 1, 2, 1, 1, 56}\right]$ |
| $\sqrt{818} = \left[28; \overline{1, 1, 1, 1, 56}\right]$ |
| $\sqrt{819} = \left[28; \overline{1, 1, 1, 1, 1, 1, 1, 1, 1, 56}\right]$ |
| $\sqrt{820} = \left[28; \overline{1, 1, 1, 2, 1, 10, 1, 2, 1, 1, 1, 56}\right]$ |
| $\sqrt{821} = \left[28; \overline{1, 1, 1, 7, 1, 1, 10, 1, 13, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 13, 1, 10, 1, 1, 7, 1, 1, 1, 56}\right]$ |
| $\sqrt{822} = \left[28; \overline{1, 2, 28, 2, 1, 56}\right]$ |
| $\sqrt{823} = \left[28; \overline{1, 2, 4, 1, 7, 2, 1, 1, 1, 1, 8, 1, 18, 4, 2, 1, 3, 2, 2, 5, 1, 27, 1, 5, 2, 2, 3, 1, 2, 4, 18, 1, 8, 1, 1, 1, 1, 2, 7, 1, 4, 2, 1, 56}\right]$ |
| $\sqrt{824} = \left[28; \overline{1, 2, 2, 1, 1, 6, 1, 1, 2, 2, 1, 56}\right]$ |
| $\sqrt{825} = \left[28; \overline{1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 56}\right]$ |
| $\sqrt{826} = \left[28; \overline{1, 2, 1, 5, 1, 1, 1, 3, 5, 2, 9, 8, 9, 2, 5, 3, 1, 1, 1, 5, 1, 2, 1, 56}\right]$ |
| $\sqrt{827} = \left[28; \overline{1, 3, 7, 1, 27, 1, 7, 3, 1, 56}\right]$ |
| $\sqrt{828} = \left[28; \overline{1, 3, 2, 3, 1, 56}\right]$ |
| $\sqrt{829} = \left[28; \overline{1, 3, 1, 4, 2, 3, 2, 1, 1, 2, 3, 2, 4, 1, 3, 1, 56}\right]$ |
| $\sqrt{830} = \left[28; \overline{1, 4, 3, 1, 10, 1, 3, 4, 1, 56}\right]$ |
| $\sqrt{831} = \left[28; \overline{1, 4, 1, 3, 1, 1, 1, 1, 18, 1, 1, 1, 1, 3, 1, 4, 1, 56}\right]$ |
| $\sqrt{832} = \left[28; \overline{1, 5, 2, 2, 1, 13, 1, 2, 2, 5, 1, 56}\right]$ |
| $\sqrt{833} = \left[28; \overline{1, 6, 4, 3, 2, 1, 2, 1, 2, 3, 4, 6, 1, 56}\right]$ |
| $\sqrt{834} = \left[28; \overline{1, 7, 3, 1, 2, 1, 1, 1, 3, 2, 28, 2, 3, 1, 1, 1, 2, 1, 3, 7, 1, 56}\right]$ |
| $\sqrt{835} = \left[28; \overline{1, 8, 1, 1, 1, 5, 1, 3, 3, 1, 1, 2, 5, 2, 1, 1, 3, 3, 1, 5, 1, 1, 1, 8, 1, 56}\right]$ |
| $\sqrt{836} = \left[28; \overline{1, 10, 1, 1, 2, 1, 1, 10, 1, 56}\right]$ |
| $\sqrt{837} = \left[28; \overline{1, 13, 2, 13, 1, 56}\right]$ |
| $\sqrt{838} = \left[28; \overline{1, 18, 3, 6, 9, 2, 28, 2, 9, 6, 3, 18, 1, 56}\right]$ |
| $\sqrt{839} = \left[28; \overline{1, 27, 1, 56}\right]$ |
| $\sqrt{840} = \left[28; \overline{1, 56}\right]$ |
| $\sqrt{842} = \left[29; \overline{58}\right]$ |
| $\sqrt{843} = \left[29; \overline{29, 58}\right]$ |
| $\sqrt{844} = \left[29; \overline{19, 2, 1, 5, 1, 3, 1, 1, 1, 1, 1, 2, 6, 1, 7, 2, 3, 2, 2, 11, 4, 1, 3, 14, 3, 1, 4, 11, 2, 2, 3, 2, 7, 1, 6, 2, 1, 1, 1, 1, 1, 3, 1, 5, 1, 2, 19, 58}\right]$ |
| $\sqrt{845} = \left[29; \overline{14, 1, 1, 14, 58}\right]$ |
| $\sqrt{846} = \left[29; \overline{11, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 11, 58}\right]$ |
| $\sqrt{847} = \left[29; \overline{9, 1, 2, 6, 8, 6, 2, 1, 9, 58}\right]$ |
| $\sqrt{848} = \left[29; \overline{8, 3, 3, 3, 8, 58}\right]$ |
| $\sqrt{849} = \left[29; \overline{7, 3, 1, 2, 1, 7, 1, 1, 2, 4, 11, 2, 2, 1, 18, 1, 2, 2, 11, 4, 2, 1, 1, 7, 1, 2, 1, 3, 7, 58}\right]$ |
| $\sqrt{850} = \left[29; \overline{6, 2, 6, 58}\right]$ |
| $\sqrt{851} = \left[29; \overline{5, 1, 4, 2, 7, 1, 7, 2, 4, 1, 5, 58}\right]$ |
| $\sqrt{852} = \left[29; \overline{5, 3, 2, 4, 2, 3, 5, 58}\right]$ |
| $\sqrt{853} = \left[29; \overline{4, 1, 5, 1, 2, 4, 1, 1, 14, 19, 2, 2, 19, 14, 1, 1, 4, 2, 1, 5, 1, 4, 58}\right]$ |
| $\sqrt{854} = \left[29; \overline{4, 2, 11, 4, 11, 2, 4, 58}\right]$ |
| $\sqrt{855} = \left[29; \overline{4, 6, 4, 58}\right]$ |
| $\sqrt{856} = \left[29; \overline{3, 1, 7, 1, 1, 1, 1, 4, 3, 1, 2, 6, 7, 6, 2, 1, 3, 4, 1, 1, 1, 1, 7, 1, 3, 58}\right]$ |
| $\sqrt{857} = \left[29; \overline{3, 1, 1, 1, 3, 1, 6, 1, 1, 6, 1, 3, 1, 1, 1, 3, 58}\right]$ |
| $\sqrt{858} = \left[29; \overline{3, 2, 3, 58}\right]$ |
| $\sqrt{859} = \left[29; \overline{3, 4, 5, 1, 1, 1, 2, 2, 3, 2, 19, 9, 1, 2, 1, 1, 4, 1, 3, 11, 2, 6, 29, 6, 2, 11, 3, 1, 4, 1, 1, 2, 1, 9, 19, 2, 3, 2, 2, 1, 1, 1, 5, 4, 3, 58}\right]$ |
| $\sqrt{860} = \left[29; \overline{3, 14, 3, 58}\right]$ |
| $\sqrt{861} = \left[29; \overline{2, 1, 11, 14, 1, 1, 2, 2, 2, 1, 1, 14, 11, 1, 2, 58}\right]$ |
| $\sqrt{862} = \left[29; \overline{2, 1, 3, 1, 1, 9, 4, 2, 2, 2, 1, 5, 1, 4, 2, 19, 8, 2, 1, 28, 1, 2, 8, 19, 2, 4, 1, 5, 1, 2, 2, 2, 4, 9, 1, 1, 3, 1, 2, 58}\right]$ |
| $\sqrt{863} = \left[29; \overline{2, 1, 1, 1, 7, 1, 3, 3, 5, 29, 5, 3, 3, 1, 7, 1, 1, 1, 2, 58}\right]$ |
| $\sqrt{864} = \left[29; \overline{2, 1, 1, 5, 1, 13, 1, 5, 1, 1, 2, 58}\right]$ |
| $\sqrt{865} = \left[29; \overline{2, 2, 3, 3, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 3, 3, 2, 2, 58}\right]$ |
| $\sqrt{866} = \left[29; \overline{2, 2, 1, 28, 1, 2, 2, 58}\right]$ |
| $\sqrt{867} = \left[29; \overline{2, 4, 29, 4, 2, 58}\right]$ |
| $\sqrt{868} = \left[29; \overline{2, 6, 19, 2, 19, 6, 2, 58}\right]$ |
| $\sqrt{869} = \left[29; \overline{2, 11, 3, 2, 1, 1, 1, 1, 1, 14, 8, 2, 1, 4, 1, 2, 8, 14, 1, 1, 1, 1, 1, 2, 3, 11, 2, 58}\right]$ |
| $\sqrt{870} = \left[29; \overline{2, 58}\right]$ |
| $\sqrt{871} = \left[29; \overline{1, 1, 19, 5, 1, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 5, 1, 5, 19, 1, 1, 58}\right]$ |
| $\sqrt{872} = \left[29; \overline{1, 1, 7, 1, 13, 1, 7, 1, 1, 58}\right]$ |
| $\sqrt{873} = \left[29; \overline{1, 1, 4, 1, 6, 1, 1, 3, 6, 3, 1, 1, 6, 1, 4, 1, 1, 58}\right]$ |
| $\sqrt{874} = \left[29; \overline{1, 1, 3, 2, 3, 1, 1, 58}\right]$ |
| $\sqrt{875} = \left[29; \overline{1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 58}\right]$ |
| $\sqrt{876} = \left[29; \overline{1, 1, 2, 14, 2, 1, 1, 58}\right]$ |
| $\sqrt{877} = \left[29; \overline{1, 1, 1, 1, 2, 4, 1, 1, 4, 2, 1, 1, 1, 1, 58}\right]$ |
| $\sqrt{878} = \left[29; \overline{1, 1, 1, 2, 2, 4, 1, 28, 1, 4, 2, 2, 1, 1, 1, 58}\right]$ |
| $\sqrt{879} = \left[29; \overline{1, 1, 1, 5, 3, 1, 3, 2, 9, 2, 3, 1, 3, 5, 1, 1, 1, 58}\right]$ |
| $\sqrt{880} = \left[29; \overline{1, 1, 1, 58}\right]$ |
| $\sqrt{881} = \left[29; \overline{1, 2, 7, 11, 1, 2, 1, 3, 1, 4, 1, 1, 1, 1, 4, 1, 3, 1, 2, 1, 11, 7, 2, 1, 58}\right]$ |
| $\sqrt{882} = \left[29; \overline{1, 2, 3, 6, 3, 2, 1, 58}\right]$ |
| $\sqrt{883} = \left[29; \overline{1, 2, 1, 1, 19, 4, 5, 6, 2, 2, 2, 1, 2, 1, 1, 2, 8, 9, 1, 3, 1, 2, 29, 2, 1, 3, 1, 9, 8, 2, 1, 1, 2, 1, 2, 2, 2, 6, 5, 4, 19, 1, 1, 2, 1, 58}\right]$ |
| $\sqrt{884} = \left[29; \overline{1, 2, 1, 2, 1, 2, 1, 58}\right]$ |
| $\sqrt{885} = \left[29; \overline{1, 2, 1, 58}\right]$ |
| $\sqrt{886} = \left[29; \overline{1, 3, 3, 1, 2, 1, 1, 5, 2, 1, 1, 1, 9, 3, 2, 1, 1, 19, 3, 1, 11, 6, 1, 1, 7, 1, 28, 1, 7, 1, 1, 6, 11, 1, 3, 19, 1, 1, 2, 3, 9, 1, 1, 1, 2, 5, 1, 1, 2, 1, 3, 3, 1, 58}\right]$ |
| $\sqrt{887} = \left[29; \overline{1, 3, 1, 1, 2, 29, 2, 1, 1, 3, 1, 58}\right]$ |
| $\sqrt{888} = \left[29; \overline{1, 3, 1, 58}\right]$ |
| $\sqrt{889} = \left[29; \overline{1, 4, 2, 3, 1, 1, 11, 2, 1, 3, 19, 1, 1, 1, 1, 6, 1, 5, 1, 3, 8, 3, 1, 5, 1, 6, 1, 1, 1, 1, 19, 3, 1, 2, 11, 1, 1, 3, 2, 4, 1, 58}\right]$ |
| $\sqrt{890} = \left[29; \overline{1, 4, 1, 58}\right]$ |
| $\sqrt{891} = \left[29; \overline{1, 5, 1, 1, 1, 5, 1, 58}\right]$ |
| $\sqrt{892} = \left[29; \overline{1, 6, 2, 14, 2, 6, 1, 58}\right]$ |
| $\sqrt{893} = \left[29; \overline{1, 7, 1, 1, 4, 14, 1, 2, 1, 1, 2, 1, 1, 2, 1, 14, 4, 1, 1, 7, 1, 58}\right]$ |
| $\sqrt{894} = \left[29; \overline{1, 8, 1, 58}\right]$ |
| $\sqrt{895} = \left[29; \overline{1, 10, 1, 58}\right]$ |
| $\sqrt{896} = \left[29; \overline{1, 13, 1, 58}\right]$ |
| $\sqrt{897} = \left[29; \overline{1, 18, 1, 58}\right]$ |
| $\sqrt{898} = \left[29; \overline{1, 28, 1, 58}\right]$ |
| $\sqrt{899} = \left[29; \overline{1, 58}\right]$ |
| $\sqrt{901} = \left[30; \overline{60}\right]$ |
| $\sqrt{902} = \left[30; \overline{30, 60}\right]$ |
| $\sqrt{903} = \left[30; \overline{20, 60}\right]$ |
| $\sqrt{904} = \left[30; \overline{15, 60}\right]$ |
| $\sqrt{905} = \left[30; \overline{12, 60}\right]$ |
| $\sqrt{906} = \left[30; \overline{10, 60}\right]$ |
| $\sqrt{907} = \left[30; \overline{8, 1, 1, 2, 2, 1, 19, 2, 1, 2, 5, 9, 1, 5, 1, 3, 1, 3, 1, 1, 29, 1, 1, 3, 1, 3, 1, 5, 1, 9, 5, 2, 1, 2, 19, 1, 2, 2, 1, 1, 8, 60}\right]$ |
| $\sqrt{908} = \left[30; \overline{7, 1, 1, 14, 1, 1, 7, 60}\right]$ |
| $\sqrt{909} = \left[30; \overline{6, 1, 2, 6, 2, 1, 6, 60}\right]$ |
| $\sqrt{910} = \left[30; \overline{6, 60}\right]$ |
| $\sqrt{911} = \left[30; \overline{5, 2, 8, 5, 1, 11, 4, 4, 2, 1, 1, 29, 1, 1, 2, 4, 4, 11, 1, 5, 8, 2, 5, 60}\right]$ |
| $\sqrt{912} = \left[30; \overline{5, 60}\right]$ |
| $\sqrt{913} = \left[30; \overline{4, 1, 1, 1, 2, 1, 1, 6, 7, 2, 2, 19, 1, 2, 1, 4, 1, 2, 1, 19, 2, 2, 7, 6, 1, 1, 2, 1, 1, 1, 4, 60}\right]$ |
| $\sqrt{914} = \left[30; \overline{4, 3, 3, 4, 60}\right]$ |
| $\sqrt{915} = \left[30; \overline{4, 60}\right]$ |
| $\sqrt{916} = \left[30; \overline{3, 1, 3, 3, 1, 1, 14, 1, 1, 3, 3, 1, 3, 60}\right]$ |
| $\sqrt{917} = \left[30; \overline{3, 1, 1, 4, 1, 14, 3, 8, 3, 14, 1, 4, 1, 1, 3, 60}\right]$ |
| $\sqrt{918} = \left[30; \overline{3, 2, 1, 6, 30, 6, 1, 2, 3, 60}\right]$ |
| $\sqrt{919} = \left[30; \overline{3, 5, 1, 2, 1, 2, 1, 1, 1, 2, 3, 1, 19, 2, 3, 1, 1, 4, 9, 1, 7, 1, 3, 6, 2, 11, 1, 1, 1, 29, 1, 1, 1, 11, 2, 6, 3, 1, 7, 1, 9, 4, 1, 1, 3, 2, 19, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 5, 3, 60}\right]$ |
| $\sqrt{920} = \left[30; \overline{3, 60}\right]$ |
| $\sqrt{921} = \left[30; \overline{2, 1, 6, 1, 11, 3, 1, 2, 2, 3, 1, 1, 1, 1, 1, 8, 20, 8, 1, 1, 1, 1, 1, 3, 2, 2, 1, 3, 11, 1, 6, 1, 2, 60}\right]$ |
| $\sqrt{922} = \left[30; \overline{2, 1, 2, 1, 9, 2, 1, 1, 6, 6, 1, 1, 2, 9, 1, 2, 1, 2, 60}\right]$ |
| $\sqrt{923} = \left[30; \overline{2, 1, 1, 1, 2, 60}\right]$ |
| $\sqrt{924} = \left[30; \overline{2, 1, 1, 14, 1, 1, 2, 60}\right]$ |
| $\sqrt{925} = \left[30; \overline{2, 2, 2, 2, 60}\right]$ |
| $\sqrt{926} = \left[30; \overline{2, 3, 11, 1, 7, 1, 3, 2, 5, 1, 1, 1, 4, 30, 4, 1, 1, 1, 5, 2, 3, 1, 7, 1, 11, 3, 2, 60}\right]$ |
| $\sqrt{927} = \left[30; \overline{2, 4, 5, 3, 5, 4, 2, 60}\right]$ |
| $\sqrt{928} = \left[30; \overline{2, 6, 3, 1, 1, 1, 8, 15, 8, 1, 1, 1, 3, 6, 2, 60}\right]$ |
| $\sqrt{929} = \left[30; \overline{2, 11, 1, 2, 3, 2, 7, 5, 2, 2, 5, 7, 2, 3, 2, 1, 11, 2, 60}\right]$ |
| $\sqrt{930} = \left[30; \overline{2, 60}\right]$ |
| $\sqrt{931} = \left[30; \overline{1, 1, 19, 1, 5, 6, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 5, 1, 19, 1, 1, 60}\right]$ |
| $\sqrt{932} = \left[30; \overline{1, 1, 8, 4, 1, 1, 2, 1, 1, 1, 14, 1, 1, 1, 2, 1, 1, 4, 8, 1, 1, 60}\right]$ |
| $\sqrt{933} = \left[30; \overline{1, 1, 5, 20, 5, 1, 1, 60}\right]$ |
| $\sqrt{934} = \left[30; \overline{1, 1, 3, 1, 1, 3, 30, 3, 1, 1, 3, 1, 1, 60}\right]$ |
| $\sqrt{935} = \left[30; \overline{1, 1, 2, 1, 2, 1, 1, 60}\right]$ |
| $\sqrt{936} = \left[30; \overline{1, 1, 2, 6, 2, 1, 1, 60}\right]$ |
| $\sqrt{937} = \left[30; \overline{1, 1, 1, 1, 3, 4, 2, 3, 6, 1, 1, 19, 1, 6, 1, 2, 2, 1, 6, 1, 19, 1, 1, 6, 3, 2, 4, 3, 1, 1, 1, 1, 60}\right]$ |
| $\sqrt{938} = \left[30; \overline{1, 1, 1, 2, 8, 2, 1, 1, 1, 60}\right]$ |
| $\sqrt{939} = \left[30; \overline{1, 1, 1, 4, 20, 4, 1, 1, 1, 60}\right]$ |
| $\sqrt{940} = \left[30; \overline{1, 1, 1, 14, 1, 1, 1, 60}\right]$ |
| $\sqrt{941} = \left[30; \overline{1, 2, 11, 1, 14, 2, 2, 1, 1, 2, 2, 14, 1, 11, 2, 1, 60}\right]$ |
| $\sqrt{942} = \left[30; \overline{1, 2, 4, 20, 4, 2, 1, 60}\right]$ |
| $\sqrt{943} = \left[30; \overline{1, 2, 2, 2, 1, 60}\right]$ |
| $\sqrt{944} = \left[30; \overline{1, 2, 1, 1, 1, 2, 2, 3, 2, 2, 1, 1, 1, 2, 1, 60}\right]$ |
| $\sqrt{945} = \left[30; \overline{1, 2, 1, 6, 12, 6, 1, 2, 1, 60}\right]$ |
| $\sqrt{946} = \left[30; \overline{1, 3, 8, 1, 1, 6, 3, 3, 1, 3, 1, 1, 1, 2, 30, 2, 1, 1, 1, 3, 1, 3, 3, 6, 1, 1, 8, 3, 1, 60}\right]$ |
| $\sqrt{947} = \left[30; \overline{1, 3, 2, 2, 2, 1, 4, 1, 7, 1, 29, 1, 7, 1, 4, 1, 2, 2, 2, 3, 1, 60}\right]$ |
| $\sqrt{948} = \left[30; \overline{1, 3, 1, 3, 20, 3, 1, 3, 1, 60}\right]$ |
| $\sqrt{949} = \left[30; \overline{1, 4, 6, 1, 1, 1, 4, 2, 14, 1, 19, 1, 1, 1, 1, 19, 1, 14, 2, 4, 1, 1, 1, 6, 4, 1, 60}\right]$ |
| $\sqrt{950} = \left[30; \overline{1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 60}\right]$ |
| $\sqrt{951} = \left[30; \overline{1, 5, 5, 2, 3, 1, 1, 1, 9, 1, 1, 1, 3, 2, 5, 5, 1, 60}\right]$ |
| $\sqrt{952} = \left[30; \overline{1, 5, 1, 6, 1, 5, 1, 60}\right]$ |
| $\sqrt{953} = \left[30; \overline{1, 6, 1, 2, 1, 3, 8, 1, 1, 4, 4, 1, 1, 8, 3, 1, 2, 1, 6, 1, 60}\right]$ |
| $\sqrt{954} = \left[30; \overline{1, 7, 1, 5, 3, 2, 6, 2, 3, 5, 1, 7, 1, 60}\right]$ |
| $\sqrt{955} = \left[30; \overline{1, 9, 3, 6, 1, 1, 5, 12, 5, 1, 1, 6, 3, 9, 1, 60}\right]$ |
| $\sqrt{956} = \left[30; \overline{1, 11, 2, 1, 1, 1, 1, 7, 8, 1, 2, 2, 1, 2, 1, 14, 1, 2, 1, 2, 2, 1, 8, 7, 1, 1, 1, 1, 2, 11, 1, 60}\right]$ |
| $\sqrt{957} = \left[30; \overline{1, 14, 2, 14, 1, 60}\right]$ |
| $\sqrt{958} = \left[30; \overline{1, 19, 1, 1, 1, 6, 4, 1, 1, 1, 1, 2, 1, 4, 1, 9, 2, 30, 2, 9, 1, 4, 1, 2, 1, 1, 1, 1, 4, 6, 1, 1, 1, 19, 1, 60}\right]$ |
| $\sqrt{959} = \left[30; \overline{1, 29, 1, 60}\right]$ |
| $\sqrt{960} = \left[30; \overline{1, 60}\right]$ |
| $\sqrt{962} = \left[31; \overline{62}\right]$ |
| $\sqrt{963} = \left[31; \overline{31, 62}\right]$ |
| $\sqrt{964} = \left[31; \overline{20, 1, 2, 6, 1, 1, 3, 1, 1, 1, 1, 11, 1, 4, 3, 1, 14, 1, 3, 4, 1, 11, 1, 1, 1, 1, 3, 1, 1, 6, 2, 1, 20, 62}\right]$ |
| $\sqrt{965} = \left[31; \overline{15, 1, 1, 15, 62}\right]$ |
| $\sqrt{966} = \left[31; \overline{12, 2, 2, 2, 12, 62}\right]$ |
| $\sqrt{967} = \left[31; \overline{10, 2, 1, 6, 4, 3, 2, 2, 1, 1, 8, 3, 2, 1, 20, 31, 20, 1, 2, 3, 8, 1, 1, 2, 2, 3, 4, 6, 1, 2, 10, 62}\right]$ |
| $\sqrt{968} = \left[31; \overline{8, 1, 6, 1, 8, 62}\right]$ |
| $\sqrt{969} = \left[31; \overline{7, 1, 3, 3, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 7, 62}\right]$ |
| $\sqrt{970} = \left[31; \overline{6, 1, 9, 1, 1, 9, 1, 6, 62}\right]$ |
| $\sqrt{971} = \left[31; \overline{6, 4, 1, 1, 1, 2, 5, 3, 2, 12, 31, 12, 2, 3, 5, 2, 1, 1, 1, 4, 6, 62}\right]$ |
| $\sqrt{972} = \left[31; \overline{5, 1, 1, 1, 7, 6, 1, 3, 1, 14, 1, 3, 1, 6, 7, 1, 1, 1, 5, 62}\right]$ |
| $\sqrt{973} = \left[31; \overline{5, 5, 2, 8, 2, 5, 5, 62}\right]$ |
| $\sqrt{974} = \left[31; \overline{4, 1, 3, 1, 1, 1, 11, 1, 5, 3, 8, 1, 1, 1, 1, 30, 1, 1, 1, 1, 8, 3, 5, 1, 11, 1, 1, 1, 3, 1, 4, 62}\right]$ |
| $\sqrt{975} = \left[31; \overline{4, 2, 4, 62}\right]$ |
| $\sqrt{976} = \left[31; \overline{4, 6, 1, 2, 3, 1, 4, 2, 3, 2, 4, 1, 3, 2, 1, 6, 4, 62}\right]$ |
| $\sqrt{977} = \left[31; \overline{3, 1, 8, 5, 1, 1, 3, 7, 1, 1, 7, 3, 1, 1, 5, 8, 1, 3, 62}\right]$ |
| $\sqrt{978} = \left[31; \overline{3, 1, 1, 1, 30, 1, 1, 1, 3, 62}\right]$ |
| $\sqrt{979} = \left[31; \overline{3, 2, 5, 1, 4, 1, 5, 2, 3, 62}\right]$ |
| $\sqrt{980} = \left[31; \overline{3, 3, 1, 1, 2, 1, 1, 3, 3, 62}\right]$ |
| $\sqrt{981} = \left[31; \overline{3, 8, 1, 1, 1, 1, 1, 1, 2, 1, 1, 15, 12, 2, 6, 2, 12, 15, 1, 1, 2, 1, 1, 1, 1, 1, 1, 8, 3, 62}\right]$ |
| $\sqrt{982} = \left[31; \overline{2, 1, 30, 1, 2, 62}\right]$ |
| $\sqrt{983} = \left[31; \overline{2, 1, 5, 31, 5, 1, 2, 62}\right]$ |
| $\sqrt{984} = \left[31; \overline{2, 1, 2, 2, 7, 2, 2, 1, 2, 62}\right]$ |
| $\sqrt{985} = \left[31; \overline{2, 1, 1, 2, 62}\right]$ |
| $\sqrt{986} = \left[31; \overline{2, 2, 62}\right]$ |
| $\sqrt{987} = \left[31; \overline{2, 2, 2, 62}\right]$ |
| $\sqrt{988} = \left[31; \overline{2, 3, 4, 1, 20, 6, 1, 14, 1, 6, 20, 1, 4, 3, 2, 62}\right]$ |
| $\sqrt{989} = \left[31; \overline{2, 4, 2, 1, 11, 1, 8, 15, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 15, 8, 1, 11, 1, 2, 4, 2, 62}\right]$ |
| $\sqrt{990} = \left[31; \overline{2, 6, 2, 62}\right]$ |
| $\sqrt{991} = \left[31; \overline{2, 12, 10, 2, 2, 2, 1, 1, 2, 6, 1, 1, 1, 1, 3, 1, 8, 4, 1, 2, 1, 2, 3, 1, 4, 1, 20, 6, 4, 31, 4, 6, 20, 1, 4, 1, 3, 2, 1, 2, 1, 4, 8, 1, 3, 1, 1, 1, 1, 6, 2, 1, 1, 2, 2, 2, 10, 12, 2, 62}\right]$ |
| $\sqrt{992} = \left[31; \overline{2, 62}\right]$ |
| $\sqrt{993} = \left[31; \overline{1, 1, 20, 1, 1, 62}\right]$ |
| $\sqrt{994} = \left[31; \overline{1, 1, 8, 1, 1, 62}\right]$ |
| $\sqrt{995} = \left[31; \overline{1, 1, 5, 4, 3, 12, 3, 4, 5, 1, 1, 62}\right]$ |
| $\sqrt{996} = \left[31; \overline{1, 1, 3, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 3, 1, 1, 62}\right]$ |
| $\sqrt{997} = \left[31; \overline{1, 1, 2, 1, 4, 1, 1, 4, 1, 2, 1, 1, 62}\right]$ |
| $\sqrt{998} = \left[31; \overline{1, 1, 2, 4, 8, 1, 3, 1, 30, 1, 3, 1, 8, 4, 2, 1, 1, 62}\right]$ |
| $\sqrt{999} = \left[31; \overline{1, 1, 1, 1, 5, 6, 1, 5, 2, 5, 1, 6, 5, 1, 1, 1, 1, 62}\right]$ |
| $\sqrt{1000} = \left[31; \overline{1, 1, 1, 1, 1, 6, 2, 2, 15, 2, 2, 6, 1, 1, 1, 1, 1, 62}\right]$ |